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These are Anthony Hornof’s notes from reading Hans van Vliet (2008) Software Engineering: 

Principles and Practice, 3rd edition, John Wiley & Sons.  Some of the notes might still use the 

page and figure numbers from the 2000 version (2nd edition) of the textbook, but I’ve tried to fix 

all of those.

The notes were taken to (a) learn and organize an understanding of the material and (b) prepare 

lectures.  The notes are not at all complete in that all chapters are not included here, and all of 

each chapter is not included.  Some of the notes are copied directly from the book.

Preface

A software project can be like building or modifying a house.

Learning software engineering is like learning swimming.

Chapter 1 - Introduction
(Read 1/10/08)

From 1955 to 1985, the percentage of total costs for computers shifted dramatically from 

hardware to software development and software maintenance.  The amount of maintenance 

also increased relative to development.  There is a nice chart on p.3 that shows this.

Dramatic software failures can cause all sorts of calamities.  A few specific examples are offered.

An 1982 book by Baber is cited in the context of some fictitious land of Ret Up Moc (Computer 

spelled backwards).  I’m not familiar with this book.

“Quality and productivity are the two central themes in the field of software engineering.”

1.1 What is software engineering?

The methodological process of building reliable, robust, efficient, accurate, useful computer 

programs.

Characteristics of the field:

• Concerned with “large” programs.

• Trying to master complex problems: people, processes, programs.  Must be broken up and 

managed.

• Software evolves:  Y2K, Euro, internet, new CPUs, etc.

• Building and maintaining s/w is very time-consuming.  The last 10%...

• S/W development is a people problem.

• It is a UI problem. Must study people at work, understand context, provide documentation, 

training.
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• Developers are not domain experts.  They generally lack factual and cultural knowledge of the 

target domain.

Tacoma Narrows Bridge failure of 1940 was an example of designs and engineers extrapolating 

beyond the models and expertise.

Software does not wear out the same way as physical products.

“90% complete” syndrome - software “almost finished” for endless amount of time.

1.2 Phases in the Development of Software

Process Model:

Requirements engineering => Design => Implementation => Testing => Maintenance

But rarely a linear process.

Phases of S/W Development

Requirements engineering:  Includes a feasibility study.  Produces a requirements spec.

Design:  Decompose into modules or components, and interfaces between.  Wrongly seen by 

some programmers as getting in the way of the “real work” of programming.

Architecture: global description of a system.

Implementation: Start with a module’s design spec.  The first goal should be a well-documented 

program, not an efficient one.

Testing: Not just a phase that follows implementation.

Maintenance:  Keep the system operational after delivery.

Project management:  Deliver on time and within budget.

System Documentation:  Project plan, quality plan, requirements spec., architecture description, 

design documentation, test plan.

Start documentation early.  

User documentation:  Task-oriented, not feature-oriented.  (Write it first!)

Breakdown of activities:  20% coding.  40% requirements and design.  40% testing.

40-20-40 rule.

Maintenance or evolution:  Corrective, adaptive, perfective, and preventive.

Software life “cycle” because it is cyclic.

1.4 From the Trenches

Henri Petroski has a book on engineering successes and failures.

Dramatic software failures:

Adrian 5 rocket blew up, $0.5 billion loss.  Overflow converting from 64-bit float to 16-bit int.

Therac-25 radiation machine delivered radiation doses 100x the intended.  Patients died.

Software interlock replaced electromechanical interlock, and failed.
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London Ambulance Service, Computer-Aided Dispatch.  Bidder was not qualified for project.  

Dispatched ambulances outside of familiar areas.  Memory leak crashed system.

1.5 Software Engineering Ethics

1.6 Quo Vadis - “Where are you going?”

Not yet a fully mature discipline.

Frederick Brooks “No Silver Bullet” article in 1987.  Problems still persist.

Chapter 2 - Introduction to SWE Management

Some reasons that software is delivered late:

- Programmers did not accurately state the status of their code.

- Management underestimated the time needed for the project.

- Management did not allow enough time for project.

- Project status not made clear.

- Programmer productivity was lower than hoped. 

- Customer did not know what they wanted.

Information Planning - the meta-project planning process; how this project fits into other projects

and systems within the organization.

2.1 Planning a S/W Dev Project

Project Plan: A document that provides a clear picture of how the project will proceed, to both 

the customer and development team.
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Major constituents of a project plan are:

1. Introduction - background, goals, deliverables, team members, summary.

2. Process model - activities, milestones, deliverables, critical paths.

3. Project organization - relationship of the project to the rest of the organization, project team 

roles, reporting structure, how stakeholders members will interact.

4. Standards, guidelines, procedures - configuration control, quality assurance, etc.

5. Management activities - status reports, resource balancing, etc.

6. Risks

7. Staffing

8. Methods and techniques

9. Quality assurance

10. Work packages

11. Resources

12. Budget and Schedule ***

13. Changes

14. Delivery

2.2 Controlling a SWD project

Control must be exerted along the following dimensions: time, info, organization, quality, money

Chapter 3 - The Software Lifecycle Revisited

Chapter 1 introduced a simple model of the software life cycle.  Phases included:

Requirements engineering, design, implementation, testing, and maintenance.

In practice, it is more complicated.

In this view, major milestones generally relate to documents, such as:

 Requirements spec.

 (Technical) specification

 Computer programs

 Test report

Document-driven.  The client signs off.  (I saw this at DRT Systems.)

Does not accommodate maintenance, or going back to previous phases, very well.

Can have excessive maintenance costs.  (World Tax Planner.)

-------------------------------------------------------------------------------------------------------------

In overview:  The waterfall model model does not really take maintenance into account.  

Evolutionary models do.  The model should *ideally* also take into consideration product 

families and long term business goals (such as how Stuart Faulk suggests).

Choose a process model for your project.  Making it explicit helps all of the stakeholders to 

anticipate what is going to happen, and helps you to gain control over the development process.
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-------------------------------------------------------------------------------------------------------------

The Waterfall Model

A slight variation from the Chapter 1 model.

Emphasizes the interaction between adjacent phases, but with testing in every phase.

Verification & Validation in every phase to compare outcome to what is required.

 Verification: Building the system correctly.

 Validation: Building the right system.

Emphasis on getting the client to “sign off” on documents for each phase before proceeding.

Problem:  It is difficult to anticipate all requirements.  The validation in each phase may allow 

for slight adjustments, but not a wildly different direction for the project.

The waterfall model, like Escher’s waterfall on the cover of the book, is unrealistic.

The strict sequence of activities is not obeyed.

For example, you may do perhaps half of the design in the “design” phase, a third in the 

“coding” phase, and then another 15% in the testing phase.  (Figure 3.2)

Designers and programmers cross boundaries all the time.

But we teach it !!!  And it is followed !!!  Why???  (It is understandable.  It is a good first 

approximation of the phases and the general order in which they should be followed.)

-------------------------------------------------------------------------------------------------------------

Agile Methods (added 9/30/10)

Agile (able to move quickly and easily) methods resign themselves to the fact that the world is 

fundamentally chaotic, and cannot always be controlled.  (Though, on the other hand, there 

are many natural forces that prevent complete entropy, at least in the near term, such as 

gravity, species survival, or people achieving goals).

Agile methods emphasize:

 1. People over processes.

2. Working software over documentation.  (Some will think “Hooray!”).
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3. Collaboration over negotiation.

4. Responding to change over following a plan.

Very similar to (the former trendy approach of) RAD (rapid application development).

“Extreme Programming” is an agile method, with two programmers working side-by-side on the 

same computer, like pilot and co-pilot.  “Pair programing.”  (If you do this, take turns.)

-------------------------------------------------------------------------------------------------------------

Prototyping

           Prototyping Phase         Actual Development Phase

A prototype is a working model of a proposed software system, or parts of such a system.

Often constructed with higher-level languages or tools that are constrained in what you can build,

and that produce inefficient programs.  (html is pretty limited, for example)

The functionality is typically limited.

Prototyping is extremely useful for addressing the problem that customers have a very difficult 

time expressing their requirements precisely.

Give the user a UI prototype, let them try it out it in the intended context, and see if the 

functionality accurately reflect the true system requirements BEFORE a huge investment in 

building a real system.

Potential problem:  The client may think that this *is* the real system.  Maintain user 

expectations.

“Throwaway prototyping” - No code is carried over (in Figure 3.3).

“Evolutionary prototyping” - More common, at least some code is re-used.

Pros and Cons of prototyping in Figure 3.2 (p.58)

Particularly useful when the user requirements are ambiguous, and when the UI is important.

Customer can get carried away with new features.  You have to keep them focussed on what is 

truly needed, and limit the number of iterations.
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-------------------------------------------------------------------------------------------------------------

Incremental Development

The system is produced and delivered to customer in small pieces, with each piece providing a 

set of independent functionality.

Essential functionality is delivered initially.

-------------------------------------------------------------------------------------------------------------

Rapid Application Development

Incremental development with “time boxes”: fixed time frames within which activities are done.

Must be able to sacrifice functionality for schedule.

Requires, close, rapid communication cycles between developers and with stakeholders

 Peer-to-peer communication between users and developers

 Intense user involvement (and commitment) in negotiating requirements and testing 

prototypes Joint Requirements Planning (JRD) and 

 Joint Application Design (JAD),

“Cutover” phase in which the system is installed (and abandoned?).

Best suited for small team development and modestly sized projects.

-------------------------------------------------------------------------------------------------------------

3.5 Maintenance or Evolution?

Can maintenance be thought of as a single box at the end of the lifecycle?

The laws of software evolution:

The law of...

1. ... continuous change:  A system that is being used undergoes continuous change.

2. ... increasing complexity:  A program that is changed becomes less structured.  Entropy 

(disorder) sets in.

3. ... program evolution:  Measurable aspects of the program (loc, number of modules, functions, 

etc.) may seem to grown in spurts because of short-term pressure.  But in fact they can really 

only grow at a steady, linear rate, because after the spurt you need to go back and “clean up 

the code” and update the documentation, etc.  (Figure 3.8 on p.74)

4. ... invariant work rate:  Adding more staff does not increase the speed of development.  Large 

systems proceed at a saturated rate.  (Windows software is routinely released years late.)

5. ... incremental growth limit:  A system can only grow to a certain size, or at a certain speed 

(clarify with Stuart) before major problems set in.

6. ... continuing growth: If you build it, they will come... and want bugs fixed, and new features...

(There are two more laws on on p.73)

“Windows Is So Slow, but Why.pdf” - S/W engineering in the news!!!
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3.6 The Spiral Model

Considered to be the idealized model for s/w development.

The conventional teaching is: waterfall bad, spiral good.

But much more complex, and more difficult to anticipate specific milestones and deliverables.

Big emphasis on risk assessment.

Subsumes the other process models discussed thus far.

-------------------------------------------------------------------------------------------------------------

Sections 3.7 and 3.8 - Software Factory and Process Modeling

These are specialized topics outside the scope of an introductory course.

-------------------------------------------------------------------------------------------------------------

3.9 Summary

Look at the trajectory we have followed:

 Waterfall to prototyping to incremental to agile to spiral.

Perhaps increasing complexity, but also increasing realism.

In all cases, you are trying to model—or simulate—the processes necessary to develop a system, 

to gain control over the process.
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Chapter 9 - Requirements Engineering
Notes on Reading Van Vliet (2008), continued.  By Anthony Hornof.

Requirements describe what the system will do.

Design describes how the system will work.

Requirements is the hardest phase, and the most important.  The longer it takes to find a problem 

in a project, the more costly it will be to recover from that problem.  Errors not discovered 

until after the software is operational cost 10 to 90 times as much to fix as errors discovered 

during the requirements analysis phase.  If you are delivering the software and realize your 

software is not doing what the customer needs, that is a very costly problem.  (Figure 13.1)

Example:  From Mom’s work at Tektronix.  Major consulting company came in and only met 

with managers.  Managers did not know how the export specialists would split orders across 

invoices to accommodate bureaucratic needs in foreign customers.  Did not get implemented. 

System was deployed.  Export specialists explained the need.  Consultants told them to just 

put it onto one order.  “We cannot sell to this customer unless we can split it across invoices.” 

They had to go back and re-implement major portions of the system.

How do you get it right?

Requirements...

 1. Elicitation - understanding the problem.

 2. Specification - describing the problem.

 3. Validation - agreeing upon the problem.

All three are critical.

Identify the Problem

A good statement of the problem is critical.  Separate the problem from the proposed solution.  

This helps enormously to convince the client that you understand their needs.

 See examples on overheads.

Elicitation Techniques

Ask:  Interview users about the work and their tasks, not the system.

Task analysis:  A technique to obtain a hierarchy of a goal-oriented set of activities.  Work (or 

play) involves people, tasks, artifacts, context.  Record and document these aspects.  Watch, 

observe the users.  Get them to think aloud.

Scenario-based analysis:  Generate usage scenarios.  These are stories that tell brief narratives of 

different stakeholders using the system.  The Project 1 handout has very brief usage 

scenarios.  The sample SRSs on the course web page describe stakeholder scenarios.  These 

should be sample stories of real users doing real tasks.  They put the system into a context 

that helps to capture and convey some of the explicit and implicit requirements.

Ethnography:  Submerge yourself into the foreign culture and learn its subtle ways.

(Form analysis:  Study the paper associated with the current system.)

(Natural language descriptions.)

9

Derivation from an existing systems:  This is certainly done in market-driven software 

development.

(Business Process Redesign.)

Prototyping - Ask: What is a software life cycle model that would lend itself to requirements 

elicitation?

Market-Driven versus Customer-Driven

“Unfortunately, most requirements engineering techniques offer little support for market-driven 

software development.” (p.208) - Agree or disagree?

This relates to the problem we came up against the other day in thinking about how to develop an

open source carpool software that would be useful to a range of different organizations.  

What is/was the problem?  How did we think to solve the problem?

The conventional approach in software engineering is to discuss requirements engineering as the 

process of identifying, documenting, and validating user requirements.

This makes a huge assumption that users and stakeholders are available to participate in the 

process.

Market-driven software 

Book example:  Develop a ‘generic’ library application rather than for a specific library.

COTS: commercial off-the-shelf.

Where does a good open source piece of software fall?  Market-driven or customer-driven?

Specification

You need to organize the document.  Pages 226-229 offer example structures.

Functional versus nonfunctional is a typical breakdown.

 Functional:  Services provided, or how inputs are mapped to outputs.

 Nonfunctional:  System properties, constraints, and qualities.  (External interface 

requirements, performance requirements, design constraints, and software system attributes.)

Requirements document should be

* Correct.  Solving the right problem in the right way.

* Unambiguous.  At some level, to all stakeholders.  Define all terms.  Must be well-written.

 The serial order problem, solved with overviews, organization (TOC, lists), some repetition.

 See Slide (3).

* Complete.  Should address all aspects of the system functionality and constraints.

* Consistent (internally).  Should not contradict itself.

* Ranked for importance.  Can be explicit or conveyed with words such as “must” vs. “should.”

* Verifiable.  Can objectively determine if each requirement is met.  Not just “fast”, “easy”.

* Modifiable. Requirements will change.  You will always need to update your document.

* Traceable.  The origin of each requirement should be documented.

Conclusion:  The requirements describe what the system should do and define the constraints on 

its operation and implementation.

Section 9.4 - A Modeling Framework - Less important than other content in the chapter.
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Chapter 10 - Modeling (3rd Edition)
__ Take blank overheads and pens to class.  In class, students create dynamic models/diagrams to explain something new about how their project will function.
__ Perhaps print and handout UML quick reference.
__ Find overheads of UML slides from Sommerville?

The chapters introduce a number of diagramming techniques that are commonly used to 

communicate aspects of a system design.

The diagrams are called “models” because they serve as small-scale representations of the 

system, or aspects of the system.

Most have boxes and lines.  It is important to be clear what each box and line represents, to build 

a shared understanding that is solid, clear, and will persist over time.

Diagrams (models) are generally static or dynamic.

Flowcharts show basic thread of control through an algorithm, dynamic models.

Models flow of control.

        <http://www.rff.com/fcs_key.png>

The Unified Modeling Language

Diagramming techniques used in OOA and OOD (analysis and design).

Integrates and unifies the notations and methods of the three amigos: Booch, Jacobson, and 

Rumbaugh (object modeling technique, OMT).  These are late 80s and early 90s.

There is also a UML process, but the language is still quite useful without the process.

But even before UML, or the three OO notations, roughly similar diagrams were used.

To Model A Classic Approach  UML   

Data Relationships  Entity Relationship   Class Diagrams

  (Static)     Diagram/Model

System States (Modes) Finite State Machines   State Machine Diagrams

  and Transitions (Dynamic)

How Info & Control  Data Flow Diagrams   Sequence Diagrams

  Moves Through   

  System (Dynamic)
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Boxes and lines mean different things in each type of model.

Major diagrams used in UML

Class diagrams: Descriptions of the types of objects in the system, and the various kinds of static 

relationships that exist among them.

State-transition diagrams: Describe the behavior of a system.  Show all possible states that an 

object can get into as a result of events that reach that object.

Interaction diagrams: Describe how groups of objects collaborate in some behavior.  Show the 

sequence of object interactions

Let’s look at each model:

ERDs

Rectangles are entities (objects)

Ovals are attributes (entity features or characteristics)

Diamonds are associations (relationships) between entities.

Arrows connect associations to entities, and can be annotated with numbers to show cardinality 

(number of elements in a grouping).

Example: Figure 10.1 shows that a book can be borrowed by at most one member, and a member 

may borrow up to ten books.

UML Class diagrams

Descriptions of the types of objects in the system, and the various kinds of static relationships 

that exist among them.

Key diagramming components: Name of class, attributes and operations, inheritance (or 

specialization).

Associations, similar to ERDs, such as is-a-member-of.  Cardinalities.

Aggregations, in which objects can be part of more than one other object.  Such as, a book can be

on more than one reading list.
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But dynamic models are critical to describe how a computer program functions because the 

program executes its commands over time.  Similar to how a screenshot does not describe an 

interface.  You also need to describe the dynamic aspects of the interface.

Finite State Machines (FSMs) (from Automata Theory? Discrete Math?)

Circles are states.

Arcs are transitions.

Useful for describing some key states that a system or component moves through.

Such as to describe a UI problem.

     click in text field ->

 entering number with mouse     entering with keyboard

      <- click on a key on the screen

Try to combine these states.  In general, try to avoid “modes” in UIs.

Example: Figure 10.2 shows the states that a book can be in.

UML State Diagrams

Very similar to FSMs, but add a start and end state.

Can have hierarchies of machines, introducing abstraction.  Figure 10.11 shows an example.

A dynamic model that can illustrate an object’s lifecycle.

Stakeholders need to share an understanding of the dynamic aspects of the system.

Include two or three dynamic models in your final SDS.  Another dynamic model....

Data Flow Diagrams (classic approach)

Rectangles show external entities.

Circles are processes.

Boxes w/o sides are data stores.

Arrows show data flow.

borrow
title

prelim.
doc

prelim.
doc

prelim.
doc

client

catalog adm.

management

log file

request

log data

return
        request

borrow
request

titletitle

a
c
k
n
o
w

le
d
g
e
m

e
n
t

report direction

log data

Figure 10.3 shows an example.
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UML Sequence Diagrams (or Interaction Diagram)

The horizontal dimension shows objects in rectangles, with vertical dashed “lifelines”.

Narrow rectangles on the lifelines show when the object is active.  Time moves downward.

Arrows show messages between objects.  Dashed lines indicate a “return” of some sort.

Conclusion:  UML evolved from earlier OOA and OOD methods, which evolved from earlier 

non-OO diagraming and design techniques.  When you think about a piece of code that you 

are going to write, you are already thinking about a range of static and dynamic aspects of 

how that code will work.  Use standardized diagramming techniques to sketch out your ideas, 

both for yourself to think things through, but also to communicate, record, and evaluate ideas 

with other team members and stakeholders.  This is an important aspect of software 

engineering, the study of the full lifecycle of building things that run on computers.

Chapter 11 - Software Architecture (3rd Edition)

Architecture is typically thought of as the study and practice of constructing buildings.

A friend of mine (Lars) who is a that kind of an architect went to a computer conference and told 

a computer person that he is an architect, and the computer person said “hardware or 

software.”  So much of working across disciplines is learning the language.

“Design Patterns” in building architecture refer to an approach to design approach and book (“A 

Pattern Language,” 1977) by Christopher Alexander.  It is embraced by some architects, 

mocked and dismissed by others.

In computer science:

“Hardware architecture” refers to the the design of the logic circuits in the chips.

“Software architecture” is what we are talking about today.

“Design Patterns” in software architecture (See Section 10.3) refer to a book by Gamma et al. 

(1995) that discusses solutions to recurring problems in software construction.

Software architecture: The large-scale structure of software systems or, more thoroughly, the top-

level decomposition of a system into its major components together with a characterization 

of how those components interact.

Typically a static (not dynamic) diagram.  “Module” implies static.

Relates to modular programming.

“The design process involves negotiating and balancing functional and quality requirements on 

the one hand and possible solutions on the other hand.”  (Van Vliet p.290)

Software architectures serve three purposes (from van Vliet):

1. Communication among stakeholders.

 Q:Who are the stakeholders in the systems you are building now?

Stakeholders are all people with an interest in the system.
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2. Captures design decisions.

The global structure of the system.  Can provide insights into the software qualities of the 

system (reliability, correctness, efficiency, portability, ...) and work breakdown.

3. Transferable abstraction of a system.

A basis for reuse.  Captures the essential design decisions.  Provide a basis for a family of 

similar systems, or a product line.  (Faulk’s mentioned this in the context of a valued 

business entity.)

The traditional view is that the requirements determine the structure of a system.  It is 

increasingly recognized that other forces influence the architecture and design.

1. Organizational inertia.  If you develop a really good code base for interacting with Google 

maps, you’re less likely to switch to Yahoo maps.

2. Architect’s expertise.  When I have students use a MVC architecture on Project 1, they 

almost all use the same on Project 2, even if other architectures are superior.

3. Technical environment.  If a Skype API is implemented, and it provides all of the telephony 

functionality that you need, you will incorporate it rather than build your own module.

The software architecture process is about both making and documenting design decisions.  Not 

all of them.  But all of the major decisions.  This is why I have you explain your design 

rationale.

One of my goals is to get you to build into your design process a consideration of alternatives, 

including alternative architectural designs.  See Figure 11.1.

Architectural Views

Terms:

• Stakeholder: A person or group with interests in a system.

• View: A representation of a whole system (from the perspective of a stakeholder).

• Viewpoint: The purpose for, or the techniques for constructing, a view.  Provides the syntax 

of the view.
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Three classes of viewpoints:

• Module viewpoint - static views of the system.  Examples: Decomposition (boxes of boxes), 

class diagrams.  Boxes are components and lines some kind of relationship.

• Component-and-connector viewpoints - dynamic views of a system  Boxes are components 

or processes, and lines represent some sort of temporal order.  Example: flowchart.

• Allocation viewpoint - some relationship between the system and the environment, such as a 

work assignment chart.

Van Vliet is trying to find abstractions and classifications that can encompass, tie together, and 

even prescribe a bunch of different architectural designs.

He wants you to learn the architecture, and also the situations in which you would use it.

Design patterns in building architecture are overplayed a bit in this edition.  He picked a really 

stupid building design pattern as his example: “Tall buildings make people crazy.”  It is just 

irresponsible to reprint such trash, but this is just what happens when people reach across into

other disciplines.  A little knowledge can be a dangerous thing.

But anyway, he tries to present a bunch of different architectures in the context of a recipe that 

incorporates the problem, the context, and the solution.  This is how software patterns are 

used in computer programming, and they are used much more precisely than in building 

architecture.  The rough idea came from Alexander, but the precise implementation for 

computer programming came from Gamma et al.  Building architects now point to Gamma et

al. as validation of their patterns, which remain loose and imprecise.

Let me just explain what are the architectures that he is talking about.  I will leave you to read 

the book to see the recipes.  These diagrams are no longer in the book.

KWIC-Index Example

A classic example from Parnass (1972) though not thought of as an example of “software 

architecture” until 1996.  (I got this 2nd detail from the footnote at the bottom of p.259)

The problem:  You want a list of all of the titles in the collection such that all of the titles are 

included once for every word in the title, with every word featured once as the first word.

And you wanted it sorted by the first word of every title regardless of its reordering.  This 

way, you can efficiently find all of the titles that have a certain phrase in it by just going to 

that one part of the list.

So “Introduction to HCI” and “HCI Handbook” with both be next to each other:

  ...

 Handbook HCI

  HCI Handbook

  HCI Introduction to

 Introduction to HCI

 to HCI Introduction

 ...

The input is a list of titles.  The output is a sorted list of duplicated and shifted titles.
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How do you do it?  Perhaps have students draw them on the board, and try to critique.

Four tasks must be accomplished:  Read input, determine shifts, sort shifts, write output.

Modular decomposition dictates one module per task.

But how do they communicate, coordinate, and share data?

These are architectural decisions.

Design #1. Shared Data - Main program and subroutines

Multiple modules share data structures.

Input into one table.  Shift into another, keeping a reference back to the original title.  Sort into a 

third table, drawing from the shift, but keeping a reference back into the original titles.

This is somewhat akin to a design in which you input the data into a single data structure, and 

then manipulate all the data within that structure.

Common approach.  All modules need access to all data.  Decisions about data representation 

have to be made very early.  Procedural interfaces also have to be decided early.

Design #2. Abstract Data Type

Rather than all modules having an explicit agreement about the exact structure of each table, the 

modules have a shared understanding about the general, or abstract, way that the data will be 

stored.  Such as a set of numbered lines, with each line have a set of numbered words.

The procedures access and manipulate these abstract data types.

For example: lines() returns the number of lines, and words(r) the number of words in line r.
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Design decisions made locally.

It is relatively easy to change the data representations and algorithms, but hard to change the 

functionality.

To not output the lines that start with “the”, you would either (1) add a module between sort and 

output (which would waste time because the shifts have already been made) or (2) change the 

shift module to skip over the lines (but the module starts to move further from its simple 

functionality).

Design #3. Implicit Invocation

Event-based.  Each module processes a line, or a batch, and deposits into a store.  The next 

module down the line is listening for that event and when it happens, processes the new data.

This can perhaps handle changes in functionality better.
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Design #4. Pipes and Filters.

Separate program, or filter, for each.  Batch processing.

The final program, Unix:  Input < input | Shift | Sort | Output > output

Easy to plug in another filter.  Can’t use data from any module but the previous.

Does not handle errors well.  Errors must be passed through successive filters.

These designs all have strengths and weaknesses, and software qualities of the ultimate system 

start to appear, at the architectural level.

How good is each 
architecture for...

#1. Main program 
and subroutines 
with shared data

#2. Abstract data 
types

#3. Implicit 
invocation

#4. Pipes and 
filters

Changes in 
functionality, such 
as skipping lines 
starting with “the”

Neutral, though 
might require 
excessive tinkering 
with existing code.

Hard because the 
processing
algorithm tends to 
be spread across 
components.

Particularly good.  Fun
generally just be added
chain of modules.

nctional changes can 
d on to the existing 

Decomposibility for 
independent
development

Hard - all 
developers need to 
know all data 
structures

Good.  Just need to ag
functions are called.

gree on the way Good.  Just need to 
communicate with 
one upstream and 
one downstream 
component.

Performance Good.  There is very li
extraneous processing
and directly manipulat

ittle redundant or 
g.  Modules quickly 
te the data.

Bad—overhead in 
the scheduling of 
events.

Bad—requires
parsing and 
unparsing at every 
stage.
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Chapter 11 - Software Design (2nd edition)
You consult a map before starting a trip.  It outweighs the misery of time lost by going down the 

wrong road.  (This is a pre-GPS statement.)

Design Considerations

1. Abstraction

2. Modularity (coupling and cohesion)

3. Info hiding

4. Complexity (size based, structure based)

5. System structure

Abstraction

Concentrate on the essential features and ignore—abstract from—those irrelevant to te current 

level.  (For example, the sorting module sorts.  You don’t really care how.)

Procedural abstraction - subproblems decomposed into subproblems.

Data abstraction - (OO Design)

 Finds a hierarchy in the program’s data.

 Primitive structures - booleans, ints chars, strings.

  Provides some info hiding.

Modularity

Parnass states the benefits of modular design.

... continued in paper notes.

Chapter 13 - Software Testing
(Some of the ideas in the lecture come from Greg Foltz, a software tester from Microsoft who 

guest lectured in this class on 11-7-04.)

Topics:

• V&V

• Testing across the lifecycle.  (Draw it and check off the boxes.)

• MS interview question

• Three approaches to testing.

• First Principles

The conventional breakdown of the software development process puts testing as a phase that 

occurs between implementation and maintenance.

The fact is, testing is an activity that occurs throughout the entire process.

Show Figure 13.1:  The longer it takes to find an error, the more costly it is, and the cost goes up 

exponentially with each phase.  Excellent graph.  Conveys a lot of information, but is drawn 

to make a central point.  (The median is the value that separates one half from the other.)

Remember that even the classic waterfall model has V&V in every phase.
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Validation - Are we building the right product?  Will it satisfy the requirements, the customer’s 

needs?

Verification - Are we building the product right?  Will it work?  Will it accept the correct range 

of inputs, and map them to the correct outputs?

Requirements: What the system will do.

Design: How the system will do it.

MS hires roughly one tester for each developer.  The test team becomes the model user, the lead 

advocate for the user.

Testing in the Requirements Phase is mostly Validation:

Requirements: Is this what the customer wants?  Are the features correctly prioritized?  Do we 

have a good set of requirements to start the design?

Requirements must be

 • feasible (can it be built?  tested?  Easy to develop ! easy to test.

• testable (objectively verifiable),

• consistent (internally (no conflict w/ others) and externally (w/ other components))

• complete (covers all cases, hardest to accomplish)

When I critique your requirements and tell you to make them more objectively verifiable, it’s not  

just an exercise in documentation.  I’m trying to help you learn how to build better software 

systems by showing you how to evaluate, you might say test, your requirements.

How do you do it with these projects?  As a group, have a session where you go through every 

single requirement, discuss whether it meets all of the above criteria.  That is what we did 

with the Multimodal Experiment software.  It had to be implemented, and the main 

programmer and unit tester was one of the stakeholders—he needed to know what to do.

Note how the SRS for VizFix is less precise, and closer to what you have been producing.  I 

thought through the problem after developing one similar system, and by myself thought 

through a better system, and just wrote down my ideas.  But they are less feasible, testable, 

consistent, and complete.  Use the Multimodal Experiment software as an example, not the 

VizFix.

Testing in the Design Phase is both Validation and Verification:

Design must also be

 • feasible

• testable

• consistent

• complete

When I critique your designs and ask for more diagrams and specification of how the system is 

going to work, how it is going to be built, it’s not (just) an exercise in writing specs or 

diagrams, it is to give you the opportunity to evaluate whether the thing will actually work.

Many problems that come up near the end (such as the difficulty in both recording and 
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listening to Skype audio, or whatever that was) could have been identified earlier on through 

a rigorous design process, and consistency checking with external components.

Testing in the Implementation Phase

This is where we typically think of the testing being done.

Unit testing of components, done in conjunction with coding.  Usually individually.

Integration testing of whole system.  Done when modules are put together.  Usually the team.

(Van Vliet organizes around) three approaches to testing:

• Coverage-based: Focuses on making sure that enough of the system gets tested.  Such as, 

every function call is examined with a set of test cases of legal and illegal inputs.

• Fault-based: Focus on finding problems.  Set a goal for how many to find.

• Error-based: Focus on situations or places in which problems are likely to occur.  Such as 

looking at the boundary conditions (where errors likely occur).

In all cases, you compare the real output to the expected output:

oracle

P

P
test

strategy
compare

input

subset of
input

subset of
input

expected
output

real
output

test
results

Figure 13.2 Global view of the test process.

Interview question at Microsoft:

How would you test a function that returns the intersection of two rectangles.  What are all the 

inputs that you would provide to the test function?

on top
of
each

Coverage-Based Techniques

Path-testing or control-flow coverage.

Y

N

Branch coverage.

Data-flow coverage - how variables are treated down various paths.

Equivalence partitioning: Break the input into domains and assume that all inputs in a given 

range are equivalent.  (You can do the same for ranges of output.)

 For example, your function expects a number between 1 and 100, inclusive.
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 You test in each region:  
1 100

  You assume equivalence within the 

partitions, or walls.  (For output, you might have three dialog boxes, and you just make sure 

that each will appear at one correct time.)

 Same class: 

Error-Based Techniques

Complementary to coverage-based.

Identify where errors are likely to occur.  Such as on the boundaries, “fencepost errors” and other 

“off by one” errors.  Test right on, and around each boundary:  
1 100

Faults are likely to occur when two modules developed by different teams interact, so focus 

testing on the interaction between the these modules.

Another way to organize testing approaches:

• Black-box testing (functional or specification-based). Test cases derived from specifications 

with little consideration of implementation details.

systemi o
 Examples: Equivalence classes and boundary testing.

• White-box testing (structural or program-based). Puts more emphasis on how the software 

works internally.

system

i o

 Example: You have to test a function that reverses a string.  A naive way to program the 

function is to create a new string.  A better way is to reverse in place.  What are two different 

important test cases?  Strings of even and odd length, to make sure the item in the middle is 

handled correctly in the strings of odd length. swap

Testing in the Test Phase

“Code complete.”  All features are implemented.  (Cool jargon.  Also a great book by Steve 

McConnell.  Good to read and mention at interviews.)

System testing, often driven by use case scenarios, how the system would likely be used.

System test days - at MS, the developers or testers would try to do a real project with the system.

Regression testing: After a bug is fixed, you make sure new bugs were not introduced, that the 

code did not regress (go backwards).  “Code churn causes bugs.”  (That’s cool.)  0.5 million 

bugs in building MS Office.

Testing in the Maintenance Phase

Continue with all of the activities above as long as your software is being used.  If your software 

is used, it will be modified.
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First Principles

• Bugs happen.  Faults are an integral part of the s/w development process.  Anticipate them.  

But...

• Impossible to test everything.

• And... Testing shows the presence of bugs, not their absence.

 So...

• Develop a plan.  Develop a system, an approach to do your testing.

• Test early:  Early fault detection is important.

• Test often:  In every phase.

Chapter 16 - User Interface Design

Topics:

• What is the UI?

• What is the user’s task?

• Lining up the task with the UI.

• User observation studies.

• UI design across the lifecycle.  (Draw it and check off the boxes.)

 Requirements: What is the user’s task.  Formative testing.

 Design: How will the system support it.

 Testing: Summative user testing.

 Maintenance: Fixing what you got wrong.

What is the UI?

Is this a good interface?  Anywhere that the user meets the system.  What the user encounters and 

how the system responds to the user’s commands.

What is the user’s task?

How to determine.

 Task analysis.

 Context of use: users, tasks, equipment, social environment, physical environment.

  (This is part of your SRS requirements.)

How to notate.

Lining up the task with the UI.

Not easy.

“Mental models”  How the user thinks it works vs. how the designer thinks it works vs. how it 

works.

User Observation Studies

Formative.

Summative.
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