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a b s t r a c t

Data integration is a perennial issue in bioinformatics, with many systems being developed and many
technologies offered as a panacea for its resolution. The fact that it is still a problem indicates a persis-
tence of underlying issues. Progress has been made, but we should ask ‘‘what lessons have been learnt?”,
and ‘‘what still needs to be done?” Semantic Web and Web 2.0 technologies are the latest to find traction
within bioinformatics data integration. Now we can ask whether the Semantic Web, mashups, or their
combination, have the potential to help.

This paper is based on the opening invited talk by Carole Goble given at the Health Care and Life Sci-
ences Data Integration for the Semantic Web Workshop collocated with WWW2007. The paper expands
on that talk. We attempt to place some perspective on past efforts, highlight the reasons for success and
failure, and indicate some pointers to the future.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Bioinformatics is a discipline based on a wealth of diverse, com-
plex and distributed data resources. It is not a surprise that data
integration has been discussed as a major challenge in bioinfor-
matics for many years, ever since the beginning of dataset collec-
tion and distributed publication. It seems that as a discipline,
bioinformatics is rather proud of the growing number of resources
it holds (nearly 900 reported in [1]). On the contrary, perhaps we
should be a little ashamed. Stein argues that we need to build a
‘‘Bioinformatics Nation” from the competing, fractured ‘‘princely
states” of the current situation [2]. Moreover, the integration of re-
sources—a prerequisite for most bioinformatics analysis—is a
perennial and costly challenge. The presence of Data Integration
in the Life Sciences (DILS),1 a thriving annual forum dedicated to
publishing yet more new integration systems, attests to the impor-
tance of the issue.

To gain some kind of perspective on data integration in bioin-
formatics, we need to examine what it is in the nature of bioinfor-
matics that perpetuates this integration challenge. We need to
reflect upon the progress that has been made, identify the kinds
of integration regimes that have been tried and understand how
they have met this challenge. We can also speculate upon how
ll rights reserved.
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the new technologies of the Semantic Web and Web 2.0 ‘‘mashups”
might help (or hinder) integration in bioinformatics.

2. A loose federation of bio-nations

Integration is necessary due to the large, and increasing, num-
bers of data resources within bioinformatics. The annual Nucleic
Acids Research journal database supplement listed 96 databases
in 2001 [3] and 800+ in 2007 [1]. A fundamental question for bio-
informatics database integration is ‘‘why so many data resources?”
Here are some reasons: There is an ecosystem of primary data col-
lections feeding secondary and tertiary databases. The Web makes
it (too) easy to publish. Being a resource provider is one way to
make a reputation. There are many types of data and each has its
own communities and its own repositories. Each new sub-disci-
pline that arises develops its own data representations skewed to
its own biases. The distributed and diverse nature of the discipline
promotes a ‘‘long tail” of specialist resource suppliers rather than
the few centralised data centres we see in disciplines such as par-
ticle physics. Consequently, each type of data has a multiplicity of
resources, many replicating, partially overlapping or presenting
slightly different views on more or less the same data types. For
example, there are some 231 different pathway databases2; differ-
ent types of data will necessitate more than one pathway resource,
but this number seems excessive. It appears that it is easier, more
2 http://www.pathguide.org.
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desirable, or more expedient, to create a database afresh than it is
adapt or re-use existing resources.

The biology research groups spawning these databases are
highly autonomous. When a group or individual decides to make
a new data resource, sometimes without the technical or model-
ling skills of a database designer, a different data model and differ-
ent values are frequently given to the data. In addition, the delivery
mechanism will vary: flat-files (of arbitrary ‘‘ASCII art”); a multi-
tude of XML schema; and highly variable Application Programming
Interfaces (APIs). Ignorance—intentional or otherwise—of the cus-
tomers of the resources often leads to the disruptive churn of inter-
faces, schemas and formats. Again, this is a symptom of the
decoupled nature of the discipline; those that use the resources
are frequently independent and decoupled from those who create
them. Thus, the autonomous nature of much bioinformatics data
management, together with the volatile nature of the data and
the fast moving nature of experimental developments within the
science (mass sequencing, transcriptomics, proteomics, all in the
past decade) means that there is a tendency for multiple, highly
heterogeneous data resources to appear. The volatility of the dat-
abases themselves (Merali and Giles [4] report that only 18% of
databases surveyed had a sustained future) means that many also
disappear to be replaced by others providing the same or similar
resources, usually in a different fashion.

3. Making a hard problem even harder

Bioinformatics touts its quantity of data as a problem. However,
compared to other disciplines such as particle physics or astron-
omy, biological data are modestly sized. Rather, the important dis-
tinctive feature is the complexity of those data (despite that
complexity sometimes being self-inflicted). Complexity arises
from: describing a sample and its originating context; the process-
ing of a sample in an experiment; the diversity of sources for a
sample; the variability of data quality and evidence/trust levels;
the diversity in types of data; the large number of interlinked col-
lections of these types; the changeable nature of the data.

The drive for integration has to tackle this complexity. The fol-
lowing headings cover topics that have to be addressed.

� The need for common, shared identities and names. No matter
what integration scheme or method is favoured all approaches
need to match up records referring to the same data object.
For example, the WS-1 protein has ten different names and 21
distinct accession numbers.3 As Mike Ashburner famously said,
‘‘a biologist would rather share their toothbrush than their gene
name.” Although Stein in [5] proposed the notion of de facto nam-
ing authorities with distinct namespaces, this is still a source of
confusion and difficulty. Two different database entries are clearly
different, but whether the entity or entities they represent are
identical or equivalent is challenging. For example, a Uniprot [6]
entry refers to a class of proteins (via a representation of its pri-
mary structure), a class of variant proteins or some viral protein,
whereas a KEGG [7] entry refers to a collection of proteins
involved in some pathway. To link these, a bioinformatician must
map a Uniprot entry’s protein (sequence) to a KEGG entry. The
syntax and mechanics of a single global unique identity scheme,
and who should be a naming authority, is still a subject of vigor-
ous debate. There are continuing arguments over the relative mer-
its of identity technologies, including the Life Science identifier
[8], Persistent URLs4 or some other scheme. This uncertainty is
hindering progress.
3 http://www.uniprot.org.
4 http://www.purl.org.
� The need for shared semantics. Coordinating resources that have
differing conceptualisations and representations makes bioin-
formatics data analysis harder than it need be. For example, a
pseudogene is a gene-like structure containing in-frame stop
codons, or is a transposable cassette that is rearranged, or
includes a full open reading frame but is not transcribed. The
community recognises the need for community standards for
both data schema and data values. The various minimal informa-
tion recommendations such as MIAME [9] and others5 [10,11]
are good examples. Ontology efforts such as the Gene Ontology
[12] have made a major contribution to cross data linking. The
existence of a shared ontology allows an integrator to combine
multiple database records with at least some guarantee that the
terms used by each resource correspond to each other. The
National Center for Biomedical Ontologies6 is a significant step
in coordinating ontology development and annotation to better
serve data pooling through shared controlled vocabularies [13].
There remains the challenge of ensuring and enabling widespread
adoption. Most importantly, the tendency for political and theo-
retical wrangling [14] that so often accompanies ontology build-
ing must be minimised if practical progress is to be made and
harm avoided.

� The need for shared and stable access mechanisms. The adoption of
stable common formats, messages and protocols, and the publi-
cation of simple well defined APIs and query interfaces, greatly
eases the plumbing together of data services. Stability is, how-
ever, the watch-word with interfaces. In 2007 BioMART [15]
altered its interface four times, breaking any client software that
used it. The National Center for Biotechnology Information7 reg-
ularly alters its report format for its BLAST service with similar
effects. A professional stance must be adopted by service provid-
ers to offer useful interfaces to their clients, and then to maintain
them.

� The need to adhere to standards. The problems above are greatly
alleviated by standardisation. Yet standards are boring. John
Quackenbush describes them as ‘‘blue collar science”. No-one
will win a Nobel Prize for defining a workable format standard.

� The need to explicitly state collection policies and governance. It is
crucial to have a clear understanding of the coverage and con-
tent of a collection, with minimum levels of quality for prove-
nance and attribution. The governance policies of collections—
responsibility for content, management of change, setting access
criteria, security arrangements, licensing arrangements and so
forth—are often confusing and ad hoc. Yet these are important
considerations for any integrator.

� The need to balance curation with exploitation. The discipline’s
culture expects detailed human curation of data. Uniprot, for
example, has scores of expert biologists working as curators,
reading papers and making skilled judgments on how to
describe a protein. This effort has often been poorly matched
by the resources needed to exploit the data by making it easier
to use.

In delivering solutions for these requirements, some fundamen-
tal social issues in bioinformatics must be borne in mind. Data
integration is hard work. On the one hand, the scientific and polit-
ical independence of the databases must be respected, and the
freedom for rapid innovation celebrated. The creative enthusiasm
of the bioinformatics community should not be dampened. On
the other hand, the data held within them need to be unambigu-
ously understood and easily integrated to address cross-database
queries that span domain and organisational boundaries. There is
5 http://www.nature.com/nbt/consult/index.html.
6 http://bioontology.org.
7 http://www.ncbi.nlm.nih.gov.
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Fig. 1. A spectrum of data integration regimes.
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a need for balance, but there is fundamentally an overwhelming
need to make data integration easier. Data integration is a prere-
quisite for much of today’s biology, and as data production has
been industrialised beyond a craft-based cottage industry, so must
bioinformatics analysis.

4. Data integration regimes

The bioinformatics community is well aware of the need to sup-
port data integration so that scientists can ‘‘data surf”. A wide vari-
ety of technologies, techniques and systems have been explored
and exploited over the past 15 years: They vary on: the architec-
tures they adopt, their reliance on manual or automated methods,
and whether it is the data source or the integration system that
bears the cost. They integrate on a range of common or corre-
sponding touch-points: data values, names, identities, schema
properties, ontology terms, keywords, loci, spatial-temporal points,
etc. These touch-points are the means by which integration is pos-
sible, and a great deal of a bioinformatician’s work is the mapping
of one touch-point to another.

� They integrate by different mechanisms, for example: direct
interlinking between database records, cross-database indexing,
data exchange protocols, the merging of data sets against a com-
mon schema, the mapping of names and values between differ-
ent data sets, aggregating all known data held on the same data
instance, and interoperating different data-centric applications
to build integration pipelines using workflows.

� They range from light touch solutions to more heavy-weight
mechanisms (Fig. 1).

We now review some popular approaches to data integration
and offer some observations.

Service oriented architectures, using technologies such as CORBA
and Web Services [16], provide a uniform regime for ‘‘plumbing
together” data resources that present themselves as services with
programmatic interfaces. These technologies are not, however,
integration mechanisms in themselves—once plumbed, the data
have to be massaged and cleaned to make them fit together or con-
form to new schema. Progress has been mixed; even when efforts
have been a technical success, they have not always been adopted.
CORBA, for example, was felt by many to be too heavy-weight,
leaving its early promise unfulfilled. Web Services have, however,
had a greater penetration [17]. Fortunately, the importance of
interacting with data through an interface other than a ‘‘point
and click” Web page has now been widely recognised, and it is to
be hoped that the days of simulating users and screen-scraping re-
sults are numbered. It is still the case, however, that Web Service
interfaces are often poorly constructed, and poorly documented.
On the one hand there are concerns that SOAP-based Web Services
lack many features necessary for supporting integration and the
technology is consequently becoming heavier.8 On the other hand,
REST (Representational State Transfer) is a simpler interaction model
which, due to its ubiquity throughout the Web 2.0 movement, is
gaining popularity [18]. The lesson is that of ‘‘Occam’s Razor”: any
integration technology should be only as heavy as it needs to be
and no heavier.

Link integration directly cross-references a data entry in a data
source with another entry in another data source. Users follow
the references. As these entries are usually presented as Web
pages, the users surf across datasets by following hyperlinks. The
approach leans heavily on ontology and identity authorities to en-
able the cross-referencing. Systems such as SRS [19], Entrez [20]
8 http://www.xs4all.nl/�irmen/comp/CORBA_vs_SOAP.html.
and Integr8 [21] are portals and keyword indexing systems that
maintain the interresource link network. This is still the most
effective and widely used approach today, supported by the major
service providers in the field. SRS still represents 40% of the EMBL-
EBI traffic. This is, however, ‘‘Integration Lite”. It is haphazard, and
requires the cooperation of service providers to work well. It is vul-
nerable to name clashes, ambiguities and updates. It is really inter-
linking rather than integration, as the integration and
interpretation is undertaken by some other mechanism—a person
or another application. It is model independent, as there is no do-
main model to guide the integration.

Data warehousing, in contrast to link integration, is ‘‘Integra-
tion++”. Data sets are extracted, cleaned and massaged into shape
in order to be systematically combined into a (different) pre-deter-
mined domain or data model, usually devised by a third party, to
be stored and queried as a single, free-standing, integrated re-
source. This is true data integration from many resources into
one, long-standing resource. It is a popular approach—especially
within sub-cultures for a particular species (e-Fungi [22], ATLAS
[23], GIMS [24], Columba [25]) or for a discipline. It is also com-
monly found within enterprises for in-house data gathering. A
range of toolkits—IBM’s Websphere Information Integrator,9 GMOD
[2], BioMART[15,26], BioWarehouse [27]—flourish. However, this
high gain approach has high pain. Warehouses require a pre-deter-
mined, encompassing model that should also remember the context
of the warehoused data by tracking its source provenance. High ini-
tial activation costs mean that warehouses often represent an act of
faith that they will be needed in the way they have been built. The
model is often fixed, or hard to change, so that the user only gets
what they are given and nothing more, despite changes in require-
ments or data. Once built, they have high maintenance costs to
maintain synchrony with changes in their sources, especially as they
are commonly decoupled from their data suppliers. They often strug-
gle to adapt to source database churn and tinkering, which leads to
brittle feeder wrappers. So, although popular, they find it hard to
cope with a world in flux, and have consequently been likened to
data mortuaries rather than warehouses. This is a symptom of data
warehouses in general, and is not just confined to the Life Sciences:
major industry commentators have observed that 30% of data migra-
tion projects fail10 and 50% of data warehousing projects.11

View integration is another ‘‘Integration++” approach, but this
time the data. is left in its source database and an environment
is constructed that makes all the databases appear to be a single
database. The result is a kind of ‘‘virtual warehouse” maintained
by a mediator processor and a series of mappings from the inte-
grating model to source (known as base) databases. Each database
has a driver to extract data to match the mapping. The outcome is
that the ‘‘content” of the view model is always fresh. This ambi-
tious approach has been widely practised in the life sciences and
is popular with database theorists and vendors. The database re-
939513305.html.
10 http://www.standishgroup.com/.
11 http://www.ncr.com/.
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search community has developed theoretical approaches based on
the mapping models—Global As View; Local As View and hybrids
[28]. Examples of systems in the Life Sciences include BioZon
[29], TAMBIS [30], Kleisli [31], Medicel Integrator,12 IBM’s Web-
sphere Information Integrator, and ComparaGrid.13 Both TAMBIS
and ComparaGrid use an ontology as a global schema with query
processing to transiently ‘‘fill” portions of that schema from distrib-
uted resources. Though intellectually appealing, this approach has
not gained widespread adoption other than as an in-house enter-
prise solution. It carries the costs of a warehouse with respect to
the development of a model; the models are hard to adapt; the driv-
ers and mappings are often fat and brittle in the face of unreliable
and dynamic resources; and the whole environment is complex,
both for the developer and the user. They also tend to be as slow
as the slowest source. Recent proposals on Dataspaces [32] argue
that the way forward is best effort evidence-based integration and
auto-generated mappings—echoing our view that just enough and
just in time integration is desirable and practical.

Model-driven service oriented architecture is a version of view
integration as practised by major projects such as caBIG [33],
where a strongly typed data grid is decreed through the definition
of Common Data Elements and a Common Vocabulary. All data re-
sources and tools are obliged to adhere to this model in order to
participate in the grid, exchanging data defined against the model.
The benefits are that the system is designed as one rather than as
many parts, which means it is generally only possible to achieve in
tightly coupled systems with considerable penalties and/or incen-
tives for the participating service providers. An attempt at a lighter
touch approach has been tried by Gaggle [34]. Loosely coupled sys-
tems require an extensive battery of stable standards for data types
and formats, and that shows little sign of happening in the bioin-
formatics domain; for example, EMBOSS reports over 20 different
sequence formats recognised by its seqret14 programme.

Integration applications such as Ensembl [22], Toolbus [35], Uto-
pia [36] and Ondex [37] are built specifically to integrate data.
They are not general integration systems as with views or ware-
houses; they are more specifically designed for a single application
domain. Most have model-driven architectures. On the plus side
these systems serve their single application domain well; on the
downside they are specific and often difficult to extend. Some, such
as the Data Playground [38], focus on enabling people to manually
explore data mapping and relationships, observe their interactions
and then automatically generate macros or workflows to replicate
the integration pattern. These are hybrids of link integration mixed
up with model-driven architectures, inheriting the weaknesses and
strengths of both.

Workflows are a general technique for describing and enacting
a series of linked processes. For data integration, the workflow
coordinates a transient dataflow between data services and analyt-
ical tools. Workflows effectively systematically automate the in sil-
ico protocols that bioinformaticians have previously undertaken in
ad hoc ways with PERL scripts. Rather than hiding the integration
methods as in warehousing or views, all is exposed. Consequently,
this technique could be called ‘‘Integration Self-help”—the work-
flow scripts are where the effort of integration takes place. Systems
vary. Some, like InforSense15 and Pipeline Pilot,16 expect strong data
type compliance so that the workflow effectively builds an on-the-
fly data warehouse, or they presume a common data model. Others,
like Taverna [39], have an open type system where the data passed
between the workflow steps is ‘‘massaged” into shape by special
12 http://www.medicel.com.
13 http://www.comparagrid.org.
14 http://emboss.sourceforge.net/apps/seqret.html.
15 http://www.inforsense.com.
16 http://www.scitegic.com/.
‘‘shim” processors and it is part of the responsibility of the workflow
to build a data model if required. Workflow approaches have become
extremely popular [11]. They are used to populate data warehouses
and data views, yet are flexible and adaptable, and do not require the
pre-existence of a single model. They presume that the data re-
sources will be unreliable, so cater for service substitutions and
faults. They typically do not hide the integration, so the evidence
for data integration is exposed for scrutiny. Most maintain a prove-
nance log [40] of their execution, giving an evidence trail of the inte-
gration. When used for scripting data chains, they are effectively
automating the link integration approach. They are, however, not a
universal panacea. Just as an experiment is hard to design, a work-
flow is hard to write, and the workflows are only as good as the ser-
vices they link. Their greatest benefit is that a bioinformatician can
make their own workflows (or re-use others) without a need to rely
on one authority to do the integration. Workflows can be thought of
a kind of mashup.

Mashups—of functional capability or content—are a Web 2.0
idea beginning to take hold in the sciences. Mashups provide a
means to take data from more than one Web-based resource to
make a new Web application. Data are taken from different Web
Services with RESTful APIs or RSS-based syndication feeds, and
‘‘mashed” to provide new ways of combining and presenting infor-
mation. An archetypal example takes a live content syndication
feed on earthquake measurements and mashes it with Google
Maps to present a new visualisation tool, overlaying sensor data
on top of geospatial data.17 By bringing information together in a
new way we provision a new application with new functionality.
The most common mashups—for example, news feed aggregators—
are aggregation rather than integration; nonetheless they are incred-
ibly useful. The attractiveness of a mashup is its Web delivery, its
openness and its lightness; frameworks such as Microsoft’s Popfly18

and Yahoo! Pipes19 make client-side development by the user
straightforward. One of the first health care and life science mashup
examples is the use of Google Earth to track the global spread of
avian flu, reported in Nature News.20

Mashups emphasize the role of the user in creating a specific,
light touch, on-demand integration, following the mantra of ‘‘just
in time, just enough” design. Thus Web 2.0 mashups are built upon
the existence of common de facto APIs alongside a collection of
light-weight tools and techniques for rapid and agile deployment,
so that small specific solutions can be built for particular problems.
This can be contrasted to long, general engineering solutions that
all too often do not meet a user’s needs. Consequently, something
light and quick is appealing, and it is easy to see how the idea of
mashup would find traction within bioinformatics. Bioinformatics
is a discipline where ‘‘just enough” and ‘‘just in time” are de ri-
gueur—it is the biology that matters, not the engineering (for good
or ill). Bioinformatics has always been a heavy user of the Web and
now has many of its resources available as Web Services. The Dis-
tributed Annotation Service (DAS) [41] can rightly be thought of as
an early form of a mashup service, and the Uniprot DASTY client
combines 26 DAS Servers layering third party information about
sequence annotations as tracks on the sequence [42].

Mashups are ‘‘Integration Lite++”, where the prime activity is
really aggregation. A mashup is transient; it lasts for as long as it
is needed, and its interpretation is dictated by the mashup applica-
tion rather than a model. Most other integration regimes aim for a
degree of permanence, in that the integration persists in order that
other applications can take advantage of it. Just as with link inte-
gration, mashups depend on having some kind of common
17 http://earthquake.googlemashups.com/.
18 http://www.popfly.com.
19 http://pipes.yahoo.com.
20 http://www.nature.com/news/2006/060105/full/news060105-1.html.
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Fig. 2. A (semantic) mashup (based on figure by Cameron). Data are linked by common or discovered identities and shared annotations (tags) drawn from controlled
vocabularies, managed by identity and ontology authorities. The data are accessed through simple programmatic APIs such as Atom, and aggregated through AJAX scripting in
the browser based on these common identities and tags.
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touch-point upon which to hang the various forms of information.
It is possible to display sensor readings on a map only if there is
some common means of locating where a sensor is on that map.
Identity serves this role in bioinformatics, so mashups are just as
vulnerable as everything else to identity clashes and concept ambi-
guities (Fig. 2).

5. The Semantic Web—mashups and smashups

This special issue of Biomedical Informatics focuses on the
semantic extension of Web 2.0 ideas in biomedical data integra-
tion. First, we should examine the role of the Semantic Web in inte-
gration. We find the situation encouraging:

� Publish data sets. By publishing datasets as RDF (Resource
Description Framework) on the Web [43] we overcome the
structural boundaries of each resource’s data model, effectively
flattening the models. In contrast to the XML schema’s tree
structure, RDF has a graph-based structure. The latter provides
a flexible, schema-less model that is responsive to change and
inherently supports semantic descriptions of data. We can
self-describe the exported data, potentially making it easier to
be interpreted by an integration system, be that a workflow or
a mashup.

� Linked data sets. By exposing, sharing and connecting pieces of
data on the Semantic Web, it should be possible to navigate a
‘‘Web of Data” by following links from a data item within one
data source to related data items within other sources, perhaps
using a Semantic Web browser like PiggyBank [44]. The publish-
ing of data as RDF, and the setting of RDF links between data
items from different data sources, is the foundation. RDF links
could also be crawled and indexed by Semantic Web search
engines like Sindice.com [45], which could provide sophisticated
search and query capabilities over the crawled data. As query
results are structured data and not just links to HTML pages,
they can be used within other applications such as DBpedia
[46]. The W3C Semantic Web Education and Outreach (SWEO)
Interest Group Linking Open Data community project21 is cur-
21 h t t p : / / e s w . w3 . o r g / t op ic / S w e o IG/ T a s kF o r c e s / C om m u n i ty P r o j e c t s /
LinkingOpenData.
rently developing best practice proposals for Web access to Linked
Data, emphasising the use of conventional Web technologies such
as URIs and HTTP, alongside mandates such that resource URIs
should be de-referenced and yield metadata about the resource.22

� Ontologies. By using RDFSchema (RDFS) and OWL (Web Ontol-
ogy Language) we have the means to create ontologies covering
a spectrum of richness, from simple taxonomies as in Simple
Knowledge Organisation Systems (SKOS)23 to full-blown knowl-
edge models.

� Mapping models. By using the linking and reasoning capabilities
of the Semantic Web we should be able to build mappings
between ontologies and data entities.

� Semantic enrichment. By annotating resources, using stand-off
annotation (where content and the annotations associated with
content are separated) we are able to describe services and
workflows to aid in service discovery [47] or workflow assembly
[38]. Embedded microformats and XML-based semantic over-
lays such as RDFa24 enable us to enrich Web content with seman-
tics. We should also be able to enrich data with its provenance, its
context or the evidence supporting its correspondence with other
data.

� Supportive metadata. By using RDF we can represent the prove-
nance trails of our integration systems in a flexible and extensi-
ble manner.

So how is the Semantic Web aiding data integration? There are
plenty of examples of ontology development using OWL, although
the rivalry with the Open Biomedical Ontologies (OBO) format is a
distraction that we hope will soon be set aside. RDF has been pro-
posed as a flexible model for standard data collection [48], and its
capability of graph merging is a potential boon to integration, since
once a URL is found in common between two RDF graphs, those
graphs can be merged into one aggregated data structure. Work-
flow systems such as Taverna have made use of RDF and OWL to
annotate their systems and record provenance logs for the integra-
tion outcomes [38]. BioMOBY [49,50] is an example of a system
http://www.w3.org/DesignIssues/LinkedData.html.
23 Simple Knowledge Organisation Systems (SKOS) http://www.w3.org/2004/02/

skos/.
24 http://www.w3.org/TR/xhtml-rdfa-primer/.

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/2004/02/skos/
http://www.w3.org/2004/02/skos/
http://www.w3.org/TR/xhtml-rdfa-primer/
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where service annotations are used to produce an RDF graph that
maps the links between datasets. The Sealife project [51] uses
semantic annotation on Web pages to provide an enriched link
experience when browsing Life Science Web pages in a browser.
We have examples of building RDF warehouses such as YeastHub
[52], and RDF on-demand caches such as BioDASH [53]. However,
these have the same issues as all warehouses, and we have little
practical experience with how the Semantic Web can help with
source churn, though in principle it ought to be able to cope more
effectively with schema changes. Although interlinked datasets
with common vocabularies are not yet widespread in the general
Web community [54] they are prevalent in the Life Sciences, and
form the basis of the W3C Healthcare and Life Sciences Interest
Group’s (HCLSIG) Semantic Web demonstrators [13,55]. These
demonstrators also exploit the graph merging capabilities of RDF.

The ultimate goal of a Semantic Web for Life Sciences is not to
create many separate, non-interacting data warehouses, but rather
to create a single Web of biological data and knowledge that can be
crawled and queried, similar to the existing Web. To achieve this
vision, we must go beyond building pre-compiled RDF warehouses
[56]. For this we turn to a combination of the Linked Data vision we
sketched above and the exciting possibilities of semantic mashups,
or ‘‘smashups” (Fig. 2). The Nature News avian flu mashup, referred
to previously, which linked up UN Food and Agricultural Organiza-
tion location data with Google Earth, ran into problems with mis-
matches between the two sources as they differed on the
conceptualisation underlying their location coordinate systems. A
mashup is only as good as its shared data points upon which the
mashup is made; clearly shared Semantic Web ontologies will help
by enabling mashups to share data and interoperate by using
shared or mapped semantic terms as mash-points, and by making
much more explicit the potential for conceptual ambiguity and
misunderstandings. Moreover, expressively defined knowledge
on the Web will enable mashups to better discover and access
existing information. Semantic knowledge might also encourage
the innovation of non-map-based mashups.

For smashups to work we must:

� persuade service providers to offer simple and stable RESTful
APIs that can be used by third parties in Web browsers;

� persuade service providers to: publish their data as RDF; build
systems that export legacy data to the Web as RDF; and expose
SPARQL25 endpoints to datasets so that they can be queried using
Semantic Web search engines

� encourage the community to tag content with shared semantic
terms that can be used as ‘‘smashup touch-points” or used to
clarify the intended semantics of data

� persuade the community to seriously tackle the profound prob-
lem of entity identity.

Much of the success of mashups lies in the underlying attitude
of the approach: its simplicity; its user participation model; and its
perpetual beta production ethos [57]. Straightforward tagging
models have the virtue of simplicity; the introduction of richer
semantic models runs the risk of added complexity which could
compromise the mashup philosophy, or make it only accessible
to specialist developers of integration systems. Toolkits such as
Popfly and Yahoo! Pipes have made mashup development accessi-
ble to a wider community; similar tools that cope with RDF and
OWL would be a real asset.
25 SPARQL is the W3C proposed query language for RDF http://www.w3.org/TR/rdf-
sparql-query/.
6. Conclusion

If the bioinformatics community could become better organised
on only one topic, then it should be addressing the issue of identity
and naming. This would have the most profound consequence for
data integration. Projects such as Bio2RDF [58] are a step towards
the provision of real time translation and harmonization of identi-
fiers over bioscience datasets, but have yet to gain real traction.
The failure to address identity will be the most likely obstacle that
will stop mashups, or any other technology or strategy, becoming
an effective integration mechanism. Many of the services in work-
flows are identity transformation mappings. Much of the work in
view and data warehouse integration is finding out if two different
data entries, and the entities they describe, are the same thing. This
is not a call for some coherence in the functional naming of genes
and proteins; it is simply pleading that some semantic-free unique
identifier be made for the basic entities being described in bioin-
formatics data resources.

The W3C HCLSIG has a real and important role to play: to grasp
the nettle of identity management and to show how, using light-
weight semantic techniques, we can rapidly aggregate data just
in time and just when it needs to be, by the user and for the user.
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