
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
GO for gene documents
Padmini Srinivasan*1,2 and Xin Ying Qiu2

Address: 1School of Library and Information Science, University of Iowa, Iowa City, IA, USA and 2Management Sciences Department, University
of Iowa, Iowa City, IA, USA

Email: Padmini Srinivasan* - padmini-srinivasan@uiowa.edu; Xin Ying Qiu - xin-qiu@uiowa.edu

* Corresponding author

Abstract
Background: Annotating genes and their products with Gene Ontology codes is an important
area of research. One approach is to use the information available about these genes in the
biomedical literature. The goal in this paper, based on this approach, is to develop automatic
annotation methods that can supplement the expensive manual annotation processes currently in
place.

Results: Using a set of Support Vector Machines (SVM) classifiers we were able to achieve Fscores
of 0.49, 0.41 and 0.33 for codes of the molecular function, cellular component and biological
process GO hierarchies respectively. We find that alternative term weighting strategies are not
different from each other in performance and feature selection strategies reduce performance. The
best thresholding strategy is one where a single threshold is picked for each hierarchy. Hierarchy
level is important especially for molecular function and biological process. The cellular component
hierarchy stands apart from the other two in many respects. This may be due to fundamental
differences in link semantics. This research shows that it is possible to beneficially exploit the
hierarchical structures by defining and testing a relaxed criteria for classification correctness. Finally
it is possible to build classifiers for codes with very few associated documents but as expected a
huge penalty is paid in performance.

Conclusion: The GO annotation problem is complex. Several key observations have been made
as for example about topic drift that may be important to consider in annotation strategies.

from First International Workshop on Text Mining in Bioinformatics (TMBio) 2006
Arlington, VA, USA. 10 November 2006

Published: 27 November 2007

BMC Bioinformatics 2007, 8(Suppl 9):S3 doi:10.1186/1471-2105-8-S9-S3

<supplement> <title> <p>First International Workshop on Text Mining in Bioinformatics (TMBio) 2006</p> </title> <editor>Min Song and Zoran Obradovic</editor> <note>Proceedings</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/8/S9/S3

© 2007 Srinivasan and Qiu; licensee BioMed Central Ltd.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/S9/S3
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
Background
Annotating genes and their products with Gene Ontology
codes is an important area of research. One approach for
doing this is to use the information available about these
genes in the biomedical literature. This is in contrast to
other annotation methods such as ones involving
sequence homology and protein domain analysis (e.g.
[1]). Our goal is to contribute to research on literature
based automatic annotation strategies.

The importance of this GO annotation problem and the
value of computational methods to solve for it are well
recognized. In the 2004 BioCreAtIve challenge a set of
tasks were designed to assess the performance of current
systems in supporting GO annotations for specific pro-
teins. In particular, the second task to identify text pas-
sages that provide the evidence for annotation resembles
most the manual process of GO annotation [2]. The par-
ticipating systems showed a variety of approaches (from
heuristics to Support Vector Machine based classification)
exploring different levels in text analysis (such as sen-
tences or paragraphs) [3]. In Rice et al. [4], Support Vector
Machines (SVM) classification was applied to the relevant
documents for each GO code. Features from the docu-
ments were selected and conflated as sets of synonymous
terms. Their methods worked better when a substantial set
of relevant documents were available. In Ray et al. [5], sta-
tistical methods were first applied to identify n-gram
informative terms from the relevant documents of each
GO term. These term models provided hypothesized
annotation models which could be applied to the test
documents. In Chiang et al. [6], a hybrid method that
combined sentence level classification and pattern match-
ing seemed to achieve higher precision with fewer true
positive documents. In some of these previous studies, the
GO hierarchical structure was explored but to a limited
extent. This was done primarily to add information to the
classification models.

Genes (or more strictly their products) are annotated with
GO codes. Our interest is in predicting annotations from
the literature, specifically from MEDLINE records. We
approach the annotation problem in three phases. In the
first phase we find documents that are relevant to the
gene. In the second phase we determine which codes
should be assigned to each document. In the third phase
we decide which codes should be assigned to a gene/gene
product based on its classified documents. In recently
completed work we studied phase 1, the problem of
retrieving MEDLINE records for genes [7]. In it we con-
sider the special challenges of dealing with gene name and
symbol ambiguity. In this research we focus mainly on
phase 2. That is, given a document we ask: what GO codes
should be assigned to it? We also close this paper with pre-
liminary results for phase 3 using a very simple strategy.

Specifically a gene is assigned a code if it is assigned to any
of its relevant documents. More sophisticated strategies
for phase 3 are left to future research.

The document annotation or classification problem of
phase two is interesting in that the codes themselves are
structured hierarchically. Similar hierarchical classifica-
tion problems have been addressed [8-10] including by
our own group [11,12]. When working on GO annotation
one may certainly draw from these related papers. How-
ever, the three hierarchies of Gene Ontology, molecular
function (MF), biological process (BP) and cellular com-
ponent (CC), may have special characteristics that could
be exploited beneficially. Or there may be special proper-
ties that must be considered by automatic annotation sys-
tems in order to be effective. In fact these hierarchies differ
significantly in link semantics. Molecular function is built
out of "is_a" links, biological process links are one-fifth
"part_of" and four-fifth "is_a" while cellular component
is about evenly split between the two link types. Although
both link types are asymmetric and transitive, their
semantics are very different. A final distinguishing aspect
is that with GO, document classification is not the end
point but a step toward the goal which is gene/gene prod-
uct annotation (i.e., phase 3).

Our research goal is to gain a better understanding of the
GO annotation problem using Support Vector Machines
classification algorithms. Continuing from earlier work
[13], we will study several open issues in the GO context.
One is the effect of the hierarchical level on performance.
Another is the effect of skewed distributions where the
negative examples tend to overwhelm the positives in the
training data. Yet another is to explore a more relaxed def-
inition of classification correctness. We will also study the
effectiveness of classifiers built for codes associated with
very few (less than five) documents. We will pay close
attention to differences between the three GO hierarchies.
Looking beyond achieving good performance, our aim in
this research is to contribute to our understanding of the
problem itself. The annotation of genes and their products
is an important contribution to developments in bioinfor-
matics. As new genes are discovered and as new functions
of genes are identified, these annotations serve as key
mechanisms for organizing and providing access to the
accumulated knowledge.

Results and discussion
Code specific SVM classifiers
We adopt a classifier-based machine learning approach
using the open source software SVM Light [14]. In all
experiments parameters are set at their default values. The
positive instances for a GO code are those records associ-
ated with it in our dataset (extracted from Entrez Gene/
LocusLink). The negative instances are records assigned to
Page 2 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
all the other GO codes of the same hierarchy. Document
term feature vectors were generated using the "atc"
weighting scheme described in the Methods section.

We built a distinct binary SVM classifier for each code
(class) where the classifier decides whether a document
belongs to the code's class or not. The hierarchy within
each GO dimension is not used at this point. The only
connection among the codes of a hierarchy is that they
share a common dataset of documents, albeit with differ-
ent positive and negative instances. Each hierarchy's data-
set is split into five parts such that the number of positive
documents for each code is about evenly distributed. This
allows us to follow a 5 split cross validation design. Spe-
cifically 4 parts are combined to get the training data and
the remaining fifth part is used as test data. This is
repeated five times with performance reported as averages
of scores across the iterations. Details of the data are given
in the Methods section. Results are shown in table 1. The
performance measures used are recall, precision and
FScore described in the Methods section.

Unfortunately, this approach yields extremely poor
results. We noticed that most of the scores calculated by
the SVM classifiers are negative, mainly due to the highly
skewed nature of the training data for most codes. As
observed by several others this problem may be fixed with
judicious thresholding [15]. So in the next experiment we
calculate optimal SVM score thresholds using training
data.

Hierarchy specific SVM score thresholds
Here we explore a single threshold score for each hierar-
chy, such that documents with scores assigned by the SVM
classifier above this threshold are declared positive. We
select the best threshold from the training data identified
for each split. In particular, we take the training data of a
split and divide it into 4 parts. (We call these 'folds' in
order to maintain a distinction from the higher level
'splits'). Cross validation over these four folds is done to
generate a single best threshold which is then applied to
the test side of the split. The single best threshold was the
average of the best thresholds in the four folds [15].

Results are presented in table 2. The table shows for each
hierarchy, the threshold score selected for each split as

well as the recall, precision and Fscore values achieved on
both the training and test sets. Averages across the splits
are also provided. First we observe that the thresholds
selected fall within a small range from -0.87 to -0.82
across all hierarchies. Molecular function has the smallest
spread of threshold values (-0.85 to -0.84). We also
observe that molecular function offers a relatively easier
problem compared to cellular component with biological
process being the hardest to solve. Finally, the test set
scores are actually better than the training set scores indi-
cating that we have successfully avoided over training our
models in each case as these are able to generalize to the
unseen test cases. Thus we see that setting the thresholds
appropriately for these SVM classifiers offers enormous
benefits in performance (when compared to the results in
table 1).

Document representations with LTC term weights
We also evaluated the use of the "ltc" weighting scheme
(described in the Methods section) for weighting features
(terms) in the document vectors. Results are shown in
table 3. Comparing these results with the results for atc
weights shown in table 2 shows that there is no significant
difference between the two strategies. For example the ltc
strategy was less than 3% better than the atc strategy for
molecular function. Differences were also negligible for
the other two hierarchies. Thus most of the remaining
results in this paper, excepted where noted, are presented
with atc as the weighting scheme.

Feature selection
It is widely acknowledged that it is important to explore
feature selection when building text classifiers. Thus we
studied three feature selection strategies for our annota-
tion problem. The first is based on document frequency
which is the number of unique documents in which a
term occurs. We computed each term's document fre-
quency in the training data set, and applied a heuristic
threshold to eliminate terms that rarely appear in the cor-
pus. The assumption is that terms with low document fre-
quency carry little class-specific information. Essentially
we set the threshold as 0.1% of the training document set
size. This was decided based on preliminary tests that
assessed alternative thresholds.

Table 1: Results: Single Classifier for each GO Code, No Thresholds (atc Weights). The table shows performance when a single
classifier is built for each code. Term weighting for document vectors is by the atc strategy.

Hierarchy Recall Precision Fscore

MF 0.0419 0.0944 0.052
CC 0.0599 0.1461 0.0764
BP 0.0234 0.064 0.0398
Page 3 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3

Page 4 of 15
(page number not for citation purposes)

Table 2: Results: Hierarchy Specific SVM Score Thresholding (atc weights). The table presents results when a single SVM score
threshold is selected for each hierarchy. These results show high improvements when compared with results obtained without
thresholds (compare with Table 1).

Training Testing

Hierarchy Split Threshold Recall Precision Fscore Recall Precision Fscore

MF 1 -0.84 0.5624 0.4136 0.4504 0.5992 0.4258 0.4684

MF 2 -0.86 0.5923 0.3835 0.4390 0.6775 0.4073 0.4769

MF 3 -0.86 0.5954 0.3734 0.4328 0.6817 0.3874 0.4684

MF 4 -0.84 0.5713 0.4046 0.449 0.6857 0.4487 0.5134

MF 5 -0.85 0.5921 0.4076 0.4541 0.6772 0.3945 0.4727

MF Average na 0.5827 0.3965 0.4451 0.6643 0.4128 0.48

CC 1 -0.82 0.4799 0.3185 0.3627 0.5301 0.3531 0.3986

CC 2 -0.82 0.4823 0.3214 0.3665 0.5359 0.3516 0.4006

CC 3 -0.86 0.5287 0.2976 0.3590 0.6553 0.3895 0.4571

CC 4 -0.85 0.5122 0.2997 0.3571 0.5703 0.2976 0.3715

CC 5 -0.85 0.5222 0.315 0.3714 0.599 0.29 0.3767

CC Average na 0.5051 0.3104 0.3633 0.5781 0.3364 0.4009

BP 1 -0.87 0.4304 0.2378 0.2847 0.4722 0.2585 0.3079

BP 2 -0.87 0.4377 0.2442 0.2908 0.5259 0.2713 0.3362

BP 3 -0.85 0.4019 0.2615 0.2948 0.4908 0.2884 0.3392

BP 4 -0.84 0.3706 0.2556 0.2794 0.4854 0.2966 0.3484

BP 5 -0.87 0.4519 0.2600 0.3069 0.4608 0.2220 0.2791

BP Average na 0.4185 0.2518 0.2913 0.4870 0.2674 0.3222

Table 3: Results: Hierarchy Specific SVM Score Thresholding (ltc weights). The table presents results when a single SVM score
threshold is selected for each hierarchy. These results are not significantly different from those for atc weights (compare with Table
2).

Training Testing

Hierarchy Split Threshold Recall Precision Fscore Recall Precision Fscore

MF 1 -0.83 0.5971 0.4165 0.4640 0.6382 0.4162 0.4735

MF 2 -0.81 0.5732 0.4194 0.4614 0.6525 0.4537 0.5091

MF 3 -0.81 0.5687 0.4133 0.4551 0.6522 0.4311 0.4908

MF 4 -0.83 0.6099 0.4079 0.4634 0.6928 0.4416 0.5138

MF 5 -0.83 0.6107 0.4148 0.4672 0.6880 0.4036 0.4822

MF Average na 0.5919 0.4144 0.4622 0.6647 0.4292 0.4939

CC 1 -0.83 0.5426 0.3135 0.3772 0.5383 0.3248 0.3810

CC 2 -0.81 0.5075 0.3248 0.3765 0.5422 0.3437 0.3971

CC 3 -0.83 0.5194 0.3136 0.3685 0.6488 0.4075 0.4763

CC 4 -0.85 0.5606 0.3080 0.3779 0.6216 0.3161 0.3929

CC 5 -0.84 0.5689 0.3284 0.3956 0.6137 0.3136 0.3993

CC Average na 0.5398 0.3177 0.3791 0.5929 0.3411 0.4093

BP 1 -0.82 0.3773 0.2596 0.2881 0.4204 0.2894 0.3163

BP 2 -0.84 0.4124 0.2595 0.2965 0.4912 0.2898 0.3423

BP 3 -0.86 0.4405 0.2522 0.2983 0.5366 0.2737 0.3395

BP 4 -0.85 0.3935 0.2344 0.2713 0.5211 0.2856 0.3497

BP 5 -0.85 0.4472 0.2691 0.3131 0.4680 0.2466 0.3035

BP Average na 0.4142 0.2550 0.2935 0.4875 0.2770 0.3303

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
The second feature selection strategy uses the χ2 statistic.
This tests the null hypothesis that the observed term fre-
quency in the documents of a certain class is not different
from its statistically expected frequency. If the null
hypothesis is rejected it implies this term is important in
defining the class of the document.

The third strategy, Z(t, c), denotes the degree of independ-
ence of the distribution of term t in the documents of class
c with respect to its distribution in the documents not
belonging to class c. The formal definition of Z(t, c) is:

μ(t, c): mean frequency of feature t in documents of cate-
gory c

σ(t, c): standard deviation of feature t frequency in docu-
ments of category c

: mean frequency of feature t in documents not

belonging to category c

: standard deviation of feature t frequency in docu-

ments not belonging to category c

nc: number of documents in category c

: number of documents not in category c.

Table 4 shows the results of feature selection combined
with the ltc feature weighting scheme. These results are
obtained from a 10% sample of the code set for each hier-
archy – with a minimum of 10 codes. We find that the best
strategy is χ2 which is significantly better than no feature
selection. (The ranking of feature selection strategies for
atc are similar). Unfortunately, when the χ2 feature selec-
tion method is combined with the hierarchy specific
thresholding strategy described earlier, the results are not
as good as with no feature selection. For example, χ2 com-

bined with the ltc strategy drops performance by 23%
from 0.4939 (see table 3) to 0.3816. Hence we do not uti-
lize feature selection in the remainder of this paper.

Code specific SVM score thresholds
In the previous experiment a single threshold score was set
for each hierarchy. In this experiment thresholds are set
specific to individual GO codes. This strategy is reasona-
ble to explore as it may indeed be that although the aver-
age thresholds fall within a small range (see tables 2 and
3), the optimal threshold varies considerably across the
codes. The overall structure of the experiment is the same
as in the previous experiment. Code specific thresholds
are set using a 4-fold cross validation experiment on each
training set. The selected threshold is the average of the
best threshold for the code across the 4 folds.

Results are presented in table 5. Interestingly, this time the
Fscores achieved on the training runs are considerably
higher than the Fscores achieved in the test runs of the sin-
gle threshold experiment (compare with table 2). How-
ever, the penalty is clearly paid on the test side, indicating
that this code specific strategy over-trains and fails to gen-
eralize effectively on new data. The one exception is in the
case of CC where the Fscores are about the same in both
cases. However, performance for MF and BP drop signifi-
cantly by 10.4% and 17.5% respectively. Thus a single
threshold over all codes of a hierarchy is superior to code
specific thresholding. We also find a similar pattern with
the previous experiment in that molecular function is eas-
ier to work with than cellular component which in turn is
less challenging than biological process.

Analysis of results
We now analyze the results obtained thus far. The results
selected for analysis are those obtained using hierarchy
specific SVM score thresholding with atc as the feature
weighting scheme and with no feature selection. Our goal
is to obtain further insights into factors influencing the
results.

Recall versus precision
It is well understood that the same Fscore may be
obtained from different combinations of recall and preci-
sion. In this regard a key point to note from table 2 (and

Z t c

n n

t c t c

t c

c

t c

c

(,)
(,) (,)

(,) (,)

=
−

+

μ μ

σ σ
0

0

0

2 2

μ(,)t c0

σ(,)t c0

nc0

Table 4: Results: Single Classifier for each GO Code, No Thresholds (ltc Weights, with Feature Selection Strategies. The three feature
selection strategies are based on document frequency (DF), the χ2 statistic (CHI) and Z(t, c) (Z).

Hierarchy Num Terms FScore
None Z DF = 0.1% CHI

MF 16 0.1211 0.0854 0.1445 0.3447
CC 12 0.1258 0.0677 0.1168 0.3079
BP 30 0.048 0.0366 0.0418 0.2333
Page 5 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
table 3) is that recall is always considerably higher than
precision. Although recall could also be improved, our
results indicate that the more serious problem for us lies
in the context of precision. That is in general we are mak-
ing the correct decisions. The problem is we are making
too many false positive declarations. In other words we
need to tighten the constraints and apply some filtering
criteria on the positive decisions declared. This angle will
be pursued in future research.

Hierarchical level & performance
Table 6 presents performance achieved for each level of
the hierarchies. Note that levels increase with the depth of
the tree. Thus more specific codes have higher level num-
bers. The table identifies the number of codes at each level
as well as the average scores. For molecular function,
ignoring level 1 which has very few codes, we find that lev-
els 2 and 3 are the most challenging. The remaining MF
levels achieve Fscore in the range of 0.4728 to 0.6667.
However with the cellular component hierarchy we have
Fscore decreasing as the level increases (barring level 1
which has only 1 code). Finally with biological process,
after level 2, we observe somewhat stable performance
between levels 3 and 6 (0.31 – 0.32 Fscore). Higher levels,
especially level 7, show better performance.

It seems that with MF and BP hierarchies the difficult deci-
sions are closer to the upper levels. This is contrary to
common intuition which suggests that classifying into
more general categories (such as animal or plant) should

be easier than classifying into more specific categories
(such as hawk or eagle). CC is different in that the deci-
sions become more challenging as we descend the hierar-
chy. The difference between MF and BP on the one hand
and CC on the other could be because of differences in the
underlying semantics of the links. As mentioned before
CC links are about evenly split between is_a and part_of
whereas BP links are about 75% made of is_a links while
MF is almost exclusively is_a. These performance differ-
ences observed across the levels of the hierarchies have
important implications in the design of automated anno-
tation systems for GO.

Number of positives for training & performance
Table 7 presents average scores for different ranges of
number of positive examples in the training sets. Intui-
tively we expect less skewed training data to provide better
results as we are using supervised SVM classifiers. Interest-
ingly we observe that this does not necessarily hold. For
example with molecular function higher numbers of true
positives do not necessarily yield better Fscores. Limiting
our attention to only those ranges with at least 10 codes,
we find for example, having more than 150 examples is
significantly worse than having just 16 to 20 positive
examples. Observe that as the size of the training set size
is the same for each code, having fewer positives implies
that there are more negatives in the sample. With the cel-
lular component hierarchy we restrict our attention to
only the first 2 rows as the other cells have too few codes
in them. Again we see that fewer examples yield better

Table 5: Results: Code Specific SVM Score Thresholding (atc weights). The table shows that SVM score thresholds selected for each
code is not an effective strategy compared with thresholds selected for each hierarchy (compare with Table 2).

Hierarchy Split Training FScore Testing
Recall Precision FScore

MF 1 0.6221 0.4499 0.3989 0.3852
MF 2 0.615 0.5364 0.4402 0.44351
MF 3 0.6128 0.5295 0.3892 0.4133
MF 4 0.6298 0.5793 0.4394 0.452
MF 5 0.6371 0.5467 0.4264 0.4451
MF average 0.6234 0.5284 0.4188 0.4278

CC 1 0.5541 0.4679 0.3774 0.3842
CC 2 0.5052 0.5029 0.3435 0.3626
CC 3 0.5131 0.5632 0.3806 0.4239
CC 4 0.5554 0.5134 0.3273 0.3727
CC 5 0.5796 0.5148 0.3875 0.4201
CC average 0.5415 0.5125 0.3632 0.3927

BP 1 0.4469 0.3994 0.2463 0.2554
BP 2 0.4472 0.4017 0.2727 0.2793
BP 3 0.4378 0.3951 0.2531 0.2589
BP 4 0.4248 0.4309 0.2654 0.2804
BP 5 0.4518 0.3710 0.2434 0.2543
BP average 0.4417 0.3996 0.2562 0.2657
Page 6 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
results. With the BP hierarchy we again see a similar ten-
dency for performance to drop with increasing numbers
of positive examples. The exception is the first row which
has significantly lower Fscore than the next few ranges.

These observations are interesting especially because they
are counter to the generally accepted notion that with a
supervised approach we may expect better results with
more positive data.

Table 6: Performance by Level of Hierarchy. The table shows that level of hierarchy makes a difference. For example, with MF and BP
the more difficult classification decisions are at the higher levels.

Hierarchy Level # of Codes Scores
Recall Precision FScore

MF 1 4 0.3176 0.1786 0.2205
MF 2 26 0.4846 0.2666 0.3176
MF 3 41 0.5261 0.3145 0.3695
MF 4 50 0.6780 0.4449 0.5066
MF 5 57 0.7799 0.4936 0.5732
MF 6 17 0.8937 0.5548 0.6505
MF 7 11 0.6961 0.3876 0.4728
MF 8 4 0.675 0.475 0.5233
MF 9 2 0.8 0.6 0.6667

CC 1 1 0.3171 0.2235 0.2537
CC 2 20 0.6476 0.4017 0.4675
CC 3 25 0.6062 0.349 0.4089
CC 4 26 0.5547 0.306 0.3741
CC 5 14 0.5502 0.2832 0.3622
CC 6 6 0.3955 0.2717 0.3135
CC 7 1 1 0.7917 0.8667

BP 1 3 0.1354 0.0481 0.0704
BP 2 10 0.3327 0.1767 0.2174
BP 3 34 0.5164 0.2517 0.3179
BP 4 54 0.4849 0.2563 0.3119
BP 5 49 0.4681 0.2516 0.3093
BP 6 52 0.4555 0.2734 0.3139
BP 7 51 0.5863 0.3251 0.3921
BP 8 21 0.4677 0.2834 0.3301
BP 9 8 0.4698 0.2840 0.3316

Table 7: Performance by Number of Positives for Training. This table shows results that are somewhat counter to expectation. For
example, with BP there is a tendency for performance to drop with increasing numbers of positive example documents in the training
set.

Training size # codes MF-FScore # codes CC-FScore # codes BP-FScore

5 2 0.25 34 0.4067 128 0.2695
6–10 3 0.0833 25 0.3650 65 0.3875
11–15 9 0.4373 7 0.4528 22 0.3716
16–20 37 0.5645 4 0.4550 15 0.3306
21–25 39 0.544 3 0.4762 9 0.2588
26–30 31 0.5566 4 0.3687 4 0.3007
31–35 6 0.4663 3 0.5651 8 0.3566
36–40 7 0.5275 0 0 6 0.3579
41–45 10 0.4124 1 0.2009 5 0.3484
46–50 11 0.4276 1 0.2861 2 0.2553
51–75 18 0.3912 2 0.3430 12 0.3060
76–100 12 0.3936 1 0.2681 6 0.2726
101–125 5 0.4273 2 0.4089 0 0
126–150 4 0.4767 2 0.3226 0 0
151–last 20 0.3511 4 0.4586 1 0.2822
Page 7 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
Correlations between level and number of positives for
training
Taking this analysis the next logical step forward we
explore the relationship between level, positive set size
and performance for each code. Table 8 presents the com-
puted correlations.

We find a moderate and significant negative correlation
between level and size in the case of MF and BP but inter-
estingly not in the case of CC. So with MF and BP more
specific codes tend to have fewer positives in the training
data but this is not the case with CC. There is also a mod-
erate and significant positive correlation between level
and FScore in the case of MF and BP but again not for CC.
That is we tend to get better Fscores with more specific
codes in MF and BP hierarchies but not so with CC. Thus
with MF and BP we need to pay closer attention to the
higher level codes. Once again our efforts indicate that CC
is a hierarchy that might require classification methods
that are different from those that are appropriate for MF
and BP. Again this may be due to the underlying differ-
ences in link semantics.

A second observation may be made from the correlations
between performance and the other two variables. Specif-
ically, level is far more important than the number of pos-
itives available for training, at least in the case of MF and
BP. Thus in order to seek improvements in performance it
would be prudent to develop methods capable of exploit-
ing the level information for the GO codes. Size of train-
ing set on the other hand does not correlate with
performance. As mentioned before this is a surprising
observation given the commonly accepted notion that
larger amounts of (positive) training data tend to yield
better performance scores.

Level specific thresholds
To explore the effect of level further we adopt a simple
strategy of setting the threshold by level. Table 9 shows
the effect of this strategy for the MF and BP hierarchies,
focussing only on levels 2 and 3. We do not apply this
strategy to CC as there was no correlation between level
and performance for this hierarchy. Also we consider only
levels 2 and 3 as level 1 has too few codes and these are
the levels where we seek improvements.

Interestingly, we find improvements at level 2 for both MF
and BP (+7.4% and +4.6% improvements in Fscore
respectively). However, the strategy does not work for
level 3 in both cases. We will consider a different
approach in future research, one that involves including
examples from the neighborhood of the code. This could
optionally include weighting by distance to the code.

Relaxing the correctness criteria
Thus far we have not utilized the hierarchical structure in
any way. There are at least two major directions in which
the hierarchy may be utilized. One is where the hierarchy
is used somehow during model building. For example, a
node's training data may be augmented with training data
from its neighbors [5]. Alternatively, a top down approach
for model building may be employed, with examples that
filter through higher level nodes participating in lower
level decisions [8]. Many variations on these themes have
been explored in the general machine learning literature.
In this research we explore a second direction that has
recently attracted the attention of researchers, especially in
the context of bioinformatics problems (e.g. [16]). Specif-
ically, we use the hierarchy to relax the criteria for correct-
ness of a classification decision during evaluation.
Essentially we assume that when a document is assigned a
GO code it is implicitly assigned the ancestor GO codes as
well. This is reasonable since the GO hierarchies encode
is_a and part_of semantics along the parent-child links
and these are transitive relationships. With this assump-
tion we relax the calculation of recall and precision and
therefore also of FScore as follows.

Recall = A/B where B is as usual the number of known cor-
rect code – pmid pairs in the dataset. The relaxation is
applied to the calculation of A.

Consider a code – pmid pair (C – P) which is known to be
correct. If our classifiers assign code C to P then A is
increased by 1. Otherwise if our classifiers assign a code C'
to P where C' is an ancestor of C then again A is increased
by 1.

Precision = E/F where F is as usual the number of positive
decisions declared by the classifiers. The relaxation is
applied to the calculation of E.

Table 8: Correlations. Correlations are presented between the number of positives in the training set (Size), the hierarchy level to
which the code belongs (Level) and the FScore achieved.

Hierarchy Level vs Size Level vs FScore Size vs FScore

MF -0.2705* 0.3361* -0.1146
CC -0.0123 -0.1051 0.0904
BP -0.2155* 0.1622* -0.0191

* denotes significant correlation (0.01 significance level). We see for example that level is far more important than the number of positives available
for training at least in the case of MF and BP.
Page 8 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
Consider a code – pmid pair (C – P) which is declared a
positive by our classifiers. If code C is correctly assigned to
P then E is increased by 1. Otherwise if there exists a code
C" which is known to be assigned to P where C is an
ancestor of C" then E is increased by 1.

Note that our relaxed evaluation accepts as correct those
decisions that are more general than the correct code and
not those decisions that are more specific than the correct
code. Thus if the target code is glucoside transport, we will
accept as correct classification with the higher level (gen-
eral) carbohydrate transport code but not classification with
the lower level (specific) alpha-glucoside transport or beta-
glucoside transport codes.

The definition of 'ancestor' can of course be varied
depending upon how far up the tree one considers. This is
formalized by ANCESTOR_LEVEL, a parameter that can
be varied systematically. For example, when set to 1 ances-
tors are limited to parents. Table 10 presents our results
using this relaxed evaluation scheme with
ANCESTOR_LEVEL varying from 1 to 5. Unfortunately
the results indicate that we do not achieve improvements
in FScore even when we consider ancestors 5 levels up the
hierarchies. But all is not lost as we see next!

Table 11 takes a different perspective on assessing per-
formance within the context of this experiment. Note first
that thus far results have been obtained from averages of
scores for each GO code. To explain we have 5 splits in our
experiment design (see section 2), and each GO code
appears in each split with roughly equal number of posi-
tive examples. Within a split we first calculate FScore for
each code and then average these FScores. Tables 4 and 5
show such averages for each split as also the global aver-
age. This approach for evaluation reflects a 'code' perspec-
tive with all codes being considered equally important. A
different way to summarize performance is to consider
each code – pmid combination as an independent deci-
sion that has to be made. Each combination needs to be
declared as positive or negative by our classifiers. Thus
given N codes and M pmids, N × M decisions are to be
made. Averages may then be computed across the set of
decisions in a split. In table 9 results are presented from
this perspective of individual decisions.

Observe first that we have new baselines identified for
each hierarchy. Note also that from the decision perspec-
tive, CC is the easier hierarchy followed by MF and then
BP. When compared to these baselines we find steady
improvements as the definition of ancestor changes.

Table 9: Results: Level Specific Thresholds. The table shows for example that we find improvements at level 2 for both MF and BP but
not for level 3.

Hierarchy Split Level Original FScore Threshold Final FScore

MF 1 2 0.3299 -0.8 0.3665
MF 2 2 0.2782 -0.83 0.2973
MF 3 2 0.3298 -0.78 0.373
MF 4 2 0.3484 -0.81 0.373
MF 5 2 0.3016 -0.78 0.3263
MF avg 2 0.3176 na 0.341 (+7.4%)

MF 1 3 0.3347 -0.87 0.3063
MF 2 3 0.3178 -0.84 0.3301
MF 3 3 0.4243 -0.88 0.3760
MF 4 3 0.4263 -0.87 0.3823
MF 5 3 0.3444 -0.86 0.3464
MF avg 3 0.3695 na 0.3482 (-5.8%)

BP 1 2 0.2542 -0.87 0.2542
BP 2 2 0.2951 -0.89 0.2989
BP 3 2 0.2261 -0.89 0.2027
BP 4 2 0.1609 -0.87 0.2319
BP 5 2 0.1507 -0.88 0.1494
BP avg 2 0.2174 na 0.2274 (+4.6%)

BP 1 3 0.2916 -0.86 0.3020
BP 2 3 0.3145 -0.83 0.3455
BP 3 3 0.3496 -0.82 0.3030
BP 4 3 0.3128 -0.83 0.3164
BP 5 3 0.3209 -0.83 0.3529
BP avg 3 0.3179 na 0.324 (+1.9%)
Page 9 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
Using ancestors up to 3 levels above gives improvements
of 7.2%, 7.6% and 4.5% for MF, CC and BP respectively.
With level 5 we have 7.4%, 8.8% and 6.1% respectively.
These improvements indicate that, from a decision per-
spective, we perform better if we accept decisions that are
approximately in the correct vicinity of the target code.

Is the decision perspective useful? The answer is yes. Aver-
aging by the code (as done in the previous experiments)
tells us which codes are more challenging than others.
While designing annotation systems, we need to know
code level differences that may lead to tailored strategies.
For example the classifier system may differ by code level

Table 10: Results: Hierarchy Specific SVM Score Thresholding (atc weights) with Relaxed Correctness Criteria (Code Perspective).
This shows that we do not get improvements in performance even when we relax the correctness criteria to consider ancestors that
are 5 levels up the hierarchy from the code being analyzed.

Hierarchy ANC_LEVEL Recall Precision FScore

MF baseline 0.6643 0.4128 0.4800
MF 1 0.6643 0.419 0.4847
MF 2 0.6650 0.4229 0.4880
MF 3 0.6650 0.4243 0.4888
MF 4 0.6650 0.4245 0.4890
MF 5 0.6650 0.4245 0.4880

CC baseline 0.5781 0.3364 0.4009
CC 1 0.5781 0.3471 0.4082
CC 2 0.5784 0.3509 0.4113
CC 3 0.5784 0.3536 0.4132
CC 4 0.5784 0.3540 0.4136

BP baseline 0.4870 0.2674 0.3222
BP 1 0.4887 0.2724 0.3265
BP 2 0.4887 0.2746 0.3285
BP 3 0.4890 0.2773 0.3301
BP 4 0.4890 0.2776 0.3305
BP 5 0.4890 0.2778 0.3306

Table 11: Results: Hierarchy Specific SVM Score Thresholding (atc weights) with Relaxed Correctness Criteria (Decision Perspective).
This shows that we get 5 to 9% improvements when we use ancestors up to three levels from the code being analyzed. These
improvements are obtained using a decision perspective for evaluation.

Hierarchy ANC_LEVEL Recall Precision FScore

MF baseline 0.6639 0.3076 0.4100
MF 1 0.6639 0.3195 0.4309
MF 2 0.6652 0.326 0.4370
MF 3 0.6652 0.3288 0.4396
MF 4 0.6652 0.3296 0.4403
MF 5 0.6652 0.3297 0.4404

CC baseline 0.7442 0.3163 0.4432
CC 1 0.7442 0.3321 0.4586
CC 2 0.7458 0.3512 0.4769
CC 3 0.74583 0.3551 0.4804
CC 4 0.7458 0.357 0.4822
CC 5 0.7458 0.3572 0.4823

BP baseline 0.5578 0.2286 0.3236
BP 1 0.5583 0.2360 0.3311
BP 2 0.5583 0.2432 0.3381
BP 3 0.5586 0.2466 0.3415
BP 4 0.5586 0.2482 0.3430
BP 5 0.5586 0.2485 0.3433
Page 10 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
in the hierarchies. So the "code perspective" is certainly
important. However, the decision perspective is more
indicative of performance in terms of our end goal –
annotation at the gene product level. The decision per-
spective implies that each annotation decision, irrespec-
tive of code, is equally important.

Finally, we consider the annotation of the gene/gene
product (i.e., the locus id) itself. We test a simple strategy
of annotating a gene with a code if the code is assigned by
our system of classifiers to a document that is relevant to
the gene. Using this strategy we obtain for MF an Fscore of
0.31 (recall = 0.35 and precision = 0.28), for CC an Fscore
of 0.36 (recall = 0.47 and precision = 0.29) and an Fscore
of 0.22 for BP (recall = 0.26 and precision = 0.191). These
scores are on the low side indicating that on the whole the
problem of annotation is hard and one that offers many
challenges.

We observe that the order of difficulty for the hierarchies
at the gene product annotation level has CC being easier
than MF and then BP. This parallels the order observed
with the decision perspective (see table 9). We view these
phase 3 (of the gene annotation problem, see section 2.3)
results as preliminary. Our focus in this paper is on gain-
ing a better understanding of phase 2 which is document
classification with GO codes.

Codes with less than five positive documents
We observe that our dataset contains 1,125, 960 and 239
codes that have less than five associated documents from
the molecular function, biological process and cellular
component hierarchies respectively. The question we ask
is what would be the level of performance if we built clas-
sifiers with very few positive examples (1, 2, 3 or 4)?

One challenge in addressing this question is that even if
we build a classifier with a training set that has say 3 pos-
itive examples, we will then have only 1 positive example
at best in our test set (for a code that has only 4 positives).
This is insufficient to give a true reading about the quality
of the model. Hence we address this question with an
experiment that simulates the situation of codes with few
positive examples.

We first identify codes that have at least 10 positive docu-
ments and then divide the data temporally into two parts
such that each part has five positive documents. We use
the earlier part to build the classifier model and the later
part for testing the model. Figure 1 illustrates the division
process. The documents in the dataset are first organized
in publication date sequence. Ties are broken randomly.
Then the temporal stream from the beginning to the posi-
tion of the fifth positive document is taken to be the train-
ing data while the stream from the next document to the

tenth positive document is taken to be the testing data.
Since the temporal partition is code-specific different
codes are likely to have different numbers of positives and
negatives in their datasets. This approach for splitting the
data is realistic in that it reflects the manner in which
information (i.e., documents) about a code collects over
time which in turn depends upon the timestamp of pub-
lications.

Assuming that we are now testing classifier models built
with only one positive document, we generate five data-
sets from the training set (as labeled in Figure 1). These
differ only in the positive document that is included. Each
dataset is used to build a classifier which is then tested on
the newer testing dataset. The average Fscore for the five
classifiers is computed. The same 5-fold strategy is used to
simulate codes with only 2 or 3 or 4 positive documents.
Since the initial training portion has 5 positive documents
we can generate, at least, 5 different combinations of up
to 4 positives which enables five-fold cross validation.

We observe again, as in earlier sections that we need to set
thresholds appropriately. This is because once again the
SVM classifiers produce mostly negative scores. Thus we
calculate optimal thresholds using a tuning sets of codes
with a single threshold set for each hierarchy.

We run the experiment in two modes. In the first mode,
labeled FirstFiveTest, we create the test set as described
above, i.e., consisting of the temporal sequence that runs
up to the fifth new positive document. In the second
mode, labeled FullTest, the test set includes all remaining
documents in the data stream. Our goal is to see if test sets
that are temporally closer to the training data have an
advantage in terms of classifier performance.

Table 12 shows the results. As expected performance
improves for all three hierarchies as the number of posi-
tives increases. Going from 1 to 4 positives we see per-
formance at least doubling from MF and BP and about a

Temporal Document StreamFigure 1
Temporal Document Stream. The figure illustrates the
process used to divide the dataset by time into two portions,
one for training and one for testing. @ (%) represents a doc-
ument that is (is not) associated with the code.
Page 11 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
50% increase for CC. The table also provides for compar-
ison (in row labeled GT4) the performance for these same
codes when code classifiers are built in the standard way
(see section titled "Hierarchy Specific SVM Score Thresh-
olds"). Since those runs were made against the full set of
data, we may only make comparisons with the FullTest
runs. We see that for each hierarchy we achieved far
stronger results in the earlier experiment. Performance is
at least halved when we compare GT4 with performance
using 4 positives. These observations are limited by the
fact that the designs of the two experiments are different.
The earlier experiment used randomized 5-fold cross vali-
dation while this one is designed along a temporal dimen-
sion. And yet a key factor is also that the number of
positives used for training is far larger in the earlier exper-
iment.

Interestingly, significantly higher performance is achieved
when the test set is limited to documents that are tempo-
rally close to the training data. Focussing only on the rows
with 4 positive documents we see improvements in the
range of 19% for molecular function, 17% for biological
process and 16% for cellular component hierachies. These
results suggest that there may be a topic drift in the way in
which these codes are assigned to documents over time.
However this suggestion is limited by the fact that there
were different numbers of documents in the two test sets.
We will study this angle further in future research.

Conclusion
We presented a series of experiments designed to explore
the value of Support Vector Machine based classifiers for
assigning Gene Ontology codes to MEDLINE documents.
We find that by using thresholds selected for each hierar-
chy Fscores of 0.49, 0.41 and 0.33 are obtained for the MF,
CC and BP hierarchies respectively (Table 3). This is with
a system of SVM classifiers that does not yet capitalize on
the hierarchical organization of the codes and does not
rely on a relaxed definition of accuracy. We compared the
atc and ltc weighting schemes for feature weighting in
document vectors. Differences in performance were negli-
gible. Unfortunately our evaluation of feature selection
methods did not yield further improvements.

We experimented further with threshold selection strate-
gies. Interestingly, thresholding at the individual code
level (as opposed to the full hierarchy) decreases perform-
ance due to over training. We explored performance by
level and by the number of positives in the training set.
The former appears more important especially for MF and
BP. CC in general differs from the other two hierarchies.
This may be due to differences in link semantics as almost
50% of links are part_of in CC. In contrast, only a fifth of
the links in BP are part_of and there is only 1 such link in
MF. Setting level specific thresholds for the second highest
level of MF and BP lead to appreciable improvements in
Fscore. But this was not the case for level 3. We explored a
more relaxed evaluation criteria where classification with
a more general code compared to the target code is con-
sidered correct. This yielded appreciable improvements

Table 12: Results: Codes with Less Than Five Positive Documents. We see that performance improves as the number of positives
improves. The row labeled GT4 shows the performance for these codes when they are processed in the standard way using all
available positive documents. The test set represented in the FirstFiveTest column is limited to documents time stamped on or earlier
to the time stamp of the fifth positive document that is not in the training set. The test set in the FullTest column includes the rest of
the temporal stream following the training set.

Hierarchy # +ves Threshold FullTest FScore Threshold FirstFiveTest FScore

MF 1 -0.942 0.141 -0.924 0.1682
MF 2 -0.892 0.1999 -0.9 0.2441
MF 3 -0.908 0.2583 -0.87 0.2825
MF 4 -0.906 0.2713 -0.86 0.3218
MF GT4 0.4209

BP 1 -0.942 0.0881 -0.95 0.1081
BP 2 -0.94 0.1440 -0.936 0.1791
BP 3 -0.904 0.1591 -0.894 0.1851
BP 4 -0.898 0.1931 -0.896 0.2251
BP GT4 0.3480

CC 1 -0.946 0.1439 -0.948 0.1791
CC 2 -0.916 0.1631 -0.896 0.1977
CC 3 -0.896 0.2012 -0.848 0.2067
CC 4 -0.872 0.2144 -0.844 0.2488
CC GT4 0.3795
Page 12 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
when a decision perspective was taken during evaluation.
Finally we presented an experiment studying the effective-
ness of classifiers built for GO codes with less than five
positive example documents. The loss in performance is
severe, at least 50%. We also make an observation that is
interesting though tentative – that there may be a topic
drift in the way in which a code is assigned to a document
over time. By implication annotation methods may need
to consider this drift to succeed.

From this study we conclude that the hierarchies are dif-
ferent. Also hierarchical level is important. Counter to
common intuition more general codes in MF and BP are
actually more challenging for classifi-cation. Also counter
to common intuition it is not necessarily the case that hav-
ing more positives in our training data yields better per-
formance. However this intuition is strikingly supported
when using less than five positive examples for classifica-
tion.

There are several other ways in which we will exploit the
hierarchical structure in future work. For example, we
plan to try an ensemble of classifiers where ensembles are
defined through the hierarchy. Finally, we plan on explor-
ing other strategies for phase 3 of the annotation problem
which is to determine the codes for a gene/gene product
after these codes have been assigned to their relevant doc-
uments. The current study has given us a better under-
standing of the problem of classifying documents with
GO codes and prepares us for future work in this direc-
tion.

Methods
Gene Ontology
Gene Ontology (GO) [17] provides a structured vocabu-
lary that is used to annotate gene products in order to suc-
cinctly indicate their molecular functions, biological
processes, and cellular components [18]. Although differ-
ent subsets of GO may be used to annotate different spe-
cies, the intent is to provide a common annotation
infrastructure. Molecular function describes activities per-
formed by individual gene products or complexes of gene
products. Examples of molecular functions are arbutin
transporter activity and retinoic acid receptor binding. A bio-
logical process is made of several steps accomplished by
sequences of molecular functions. Examples include lipo-
protein transport and phage assembly. Cellular components
are for example, the nucleus, NADPH oxidase complex, and
chromosome. There are three hierarchies in GO correspond-
ing to these major dimensions. Each hierarchy is a
directed acyclic graph (DAG).

Annotations
We began with the August 2005 download of LocusLink
and extracted the entries for Homo Sapiens limited to

those with locus type gene with protein product, function
known or inferred.

There are 77, 759 annotation entries for 16, 630 locus ids.
Considering only annotations that used documents for
evidence we have 29, 501 entries. These entries are then
limited to those having TAS (Traceable Author Statement)
or IDA (Inferred from Direct Assay) as evidence types
yielding 20, 869 entries [19]. These entries are composed
of 9, 577 annotations for biological processes (BP) 5, 195
annotations for cellular components (CC) and 6, 097 for
molecular function (MF). Together these 20, 869 annota-
tions reference 8, 744 unique documents.

We looked at the distribution of the GO codes in our data-
set in terms of the number of documents associated with
each. The range is 1 to 333 for MF, 1 to 789 for CC and 1
to 579 for BP.

In all experiments (except for the section exploring classi-
fiers for codes with less than 5 positive documents) we
limited ourselves to only those codes that had at least 5
(unique) documents associated. Thus we get 283 unique
codes for BP, 93 for CC and 214 for MF. We used 5 as the
threshold given the 5 times cross validation design for our
experiments. Thus we wish to ensure that each code had
at least 1 evidence document in each split. Interestingly
some code – pmid combinations occur more than once.
This happens when the same document offers two differ-
ent kinds of evidence, say TAS as also IDA, for annotation.
Limiting these combinations to the unique occurrences
gives us 7, 200 annotations for BP, 4, 391 for CC and 3,
877 for MF.

The data for each hierarchy was randomly split into 5
splits such that each code appears in each split with near
equal numbers of evidence documents. The overall cross
validation strategy is to iteratively take 4 splits as training
data and test the trained model on the remaining fifth
split. As an example for split1, we take splits 2 – 5 as train-
ing data and 1 as testing. This ensures that there are at least
4 relevant documents for a code in the training side and at
least 1 in the test side.

For the experiment with codes having less than 5 positive
documents we simulated the situation using codes with at
least 10 positive documents. Our dataset contained 89,
152 and 50 codes with at least 10 positive documents for
the molecular function, biological process and cellular
component hierarchies respectively. From this collection
we removed approximately 10% of the codes for each
hierarchy with a minimum of 10 codes for tuning data.
Specifically, we tuned for the thresholds with 10, 15 and
10 codes for the three hierarchies respectively.
Page 13 of 15
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
Document representation
In information retrieval research, the most widely used
document representation method is the "bag of words"
approach where all the terms are used to form a vector
representation. Functional or connective words are con-
sidered as stop words and are generally removed since
they are assumed to have no information content. The
term features could be weighted for example, with TF ×
IDF weights or boolean weights. Alternative methods of
defining terms have been explored, but with little signifi-
cant improvement for text classification performance.
Recent research by Moschitti and Basili [20] suggests that
the elementary textual representation based on words
applied to SVMs models is very effective in text classifica-
tion. More complex linguistic features such as part-of-
speech information and word senses did not contribute to
the predictive accuracy of SVMs.

We used the title, abstract, RN and MeSH fields of the
MEDLINE records. Stemmed words from these fields
(after removing stop words) were used to generate vector
representations for documents. These were produced
using the SMART system [21]. The "atc" [22] construction
of TF × IDF weighting scheme was applied to the terms for
most of the experiments. This representation has worked
well in our previous research [23]. We also test the "ltc"
weighting scheme. These schemes are described below.

Here tf is the number of times a term occurs in a docu-
ment. maxtf is the highest tf observed. N is the number of
documents in the dataset and n is the number in which
the term i occurs.

Performance measures
Precision is defined as the number of true positive deci-
sions made by the classifier divided by the number of pos-
itive decisions made by the classifier. Recall is defined as
the number of true positive decisions made by the classi-
fier divided by the number of positive decisions that exists
in the dataset. FScore is the harmonic mean of precision
and recall. It is:

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
PS took the lead in designing and conducting the experi-
ments and in writing the paper. XYQ collaborated in con-
ducting the experiments and in writing the paper.

Acknowledgements
This material is based upon work supported by the National Science Foun-
dation under Grant No.0312356 awarded to P. Srinivasan. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

This article has been published as part of BMC Bioinformatics Volume 8 Sup-
plement 9, 2007: First International Workshop on Text Mining in Bioinfor-
matics (TMBio) 2006. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/8?issue=S9.

References
1. Xie H, Wasserman A, Levine Z, Novik A, Grebinshy V, Shoshan A,

Mintz L: Large Scale Protein Annotation through Gene
Ontology. Genome Research 2002, 12:785-794.

2. Hirschman L, Yeh A, Blaschke C, Valencia A: Overview of BioCre-
AtIvE: cretical assessment of information extraction for biol-
ogy. BMC Bioinformatics 2005, 6(Suppl 1):S1-.

3. Blaschke C, Leon EA, Krallinger M, Valencia A: Evaluation of Bio-
CreAtIvE assessment of task 2. BMC Bioinformatics 2005,
6(Suppl 1):S16-.

4. Rice SB, Nenadic G, Stapley BJ: Mining protein function from text
using term-based support vector machines. BMC Bioinformatics
2005, 6(Suppl 1):S22-.

5. Ray S, Craven M: Learning statistical models for annotating
proteins with function information using biomedical text.
BMC Bioinformatics 2005, 6(Suppl 1):S18-.

6. Chiang JH, Yu HC: Extracting Functional Annotations of Pro-
teins Based on Hybrid Text Mining Approaches. Proceedings of
BioCreAtIvE Challenge Evaluation Workshop 2004 2004.

7. Sehgal AK, Srinivasan P: Retrieval with Gene Queries. BMC Bioin-
formatics 2006, 7(220):.

8. Charkrabarti S, Dom B, Agrawal R, Raghavan P: Using Taxonomy,
Discriminants, and Signatures for Navigating in Text Data-
bases. Proceedings of the International Conference on Very Large Data
Bases (VLDB) 1997.

9. Dumais S, Chen H: Hierarchical Classification of Web Content.
Proceedings of the ACM International Conference on Research and Devel-
opment in Information Retrieval (SIGIR) 2000 2000:256-263.

10. Wibowo W, Williams H: Minimising Errors in Hierarchical
Web Categorisation. Proceedings of the International Conference on
Information and Knowledge Management (CIKM) 2002 2002:525-531.

11. Ruiz M, Srinivasan P: Hybrid Hierarchical Classifiers for Catego-
rization of Medical Documents. Proceedings of the American Soci-
ety for Information Science and Technology 2003.

12. Ruiz ME, Srinivasan P: Hierarchical Text Categorization Using
Neural Networks. Information Retrieval 2002, 5:87-118.

13. Qiu XY, Srinivasan P: GO for Gene Documents. Proceedings of
ACM First International Workshop on Text Mining in Bioinformatics 2006.

14. [http://svmlight.joachims.org].
15. Brank J, Grobelnik M, Milic-Frayling N, Mlade D: Training text clas-

sifiers with SVM on very few positive examples. Microsoft Cor-
poration Technical Report, MSR-TR-2003-34 2003.

16. Kiritchenko S, Matwin S, Famili A: Functional Annotation of
Genes Using Hierarchical Text Categorization. Proceedings of
BioLINK SIG: Linking Literature, Information and Knowledge for Biology
2005.

17. Gene Ontology 2006 [http://www.geneontology.org].
18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,

Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene Ontology: tool for the unification
of biology. Nature Genetics 2000, 25:25-29.

19. [http://www.geneontology.org/GO.evidence.shtml].

atc
w

w
where w

tf

tf

N

n

ltc
w

w
wher

i

ii

i

i

ii

= = + × ×

=

∑

∑

2

2

0 5 0 5(. .) ln()
max

ee w tf
N

ni = + ×(ln() .) ln()1 0

2 × ×
+

recall precision

recall precision
Page 14 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8?issue=S9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630348
http://svmlight.joachims.org
http://www.geneontology.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.geneontology.org/GO.evidence.shtml

BMC Bioinformatics 2007, 8(Suppl 9):S3 http://www.biomedcentral.com/1471-2105/8/S9/S3
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

20. Moschitti A, Basili R: Complex Linguistic Features for Text
Classification: A Comprehensive Study. Proceedings of the 26th
European Conference on Information Retrieval (ECIR) 2004:181-196.

21. Salton G: Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer Addison-Wesley; 1989.

22. Singhal A, Buckley C, Mitra M: Pivoted Document Length Nor-
malization. Proceedings of the 1996 ACM SIGIR Conference on
Research and Development in Information Retrieval 1996:21-29.

23. Light M, Qiu XY, Srinivasan P: The Language of Bioscience:
Facts, Speculations and Statements in Between. Proceedings of
BioLink 2004 Workshop on Linking Biological Literature, Ontologies and
Databases 2004.
Page 15 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

