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ABSTRACT
Effective diagnosis of Alzheimer’s disease (AD) is of pri-
mary importance in biomedical research. Recent studies
have demonstrated that neuroimaging parameters are sensi-
tive and consistent measures of AD. In addition, genetic
and demographic information have also been successfully
used for detecting the onset and progression of AD. The
research so far has mainly focused on studying one type
of data source only. It is expected that the integration of
heterogeneous data (neuroimages, demographic, and genetic
measures) will improve the prediction accuracy and enhance
knowledge discovery from the data, such as the detection of
biomarkers. In this paper, we propose to integrate hetero-
geneous data for AD prediction based on a kernel method.
We further extend the kernel framework for selecting fea-
tures (biomarkers) from heterogeneous data sources. The
proposed method is applied to a collection of MRI data from
59 normal healthy controls and 59 AD patients. The MRI
data are pre-processed using tensor factorization. In this
study, we treat the complementary voxel-based data and re-
gion of interest (ROI) data from MRI as two data sources,
and attempt to integrate the complementary information by
the proposed method. Experimental results show that the
integration of multiple data sources leads to a considerable
improvement in the prediction accuracy. Results also show
that the proposed algorithm identifies biomarkers that play
more significant roles than others in AD diagnosis.
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1. INTRODUCTION
Currently, approximately 5 million people in the US -

about 10% of the population over 60 are afflicted by Alzheimer’s
disease (AD), the most common form of dementia. The di-
rect cost to care the patients by family members or health
care professional is estimated to be over $100 billion per
year. As the population ages over the next several decades,
it is expected that the AD cases and the associated costs
will go up dramatically. Recognizing the urgent need to
slow down or completely prevent from the occurrence of a
health care crisis in US and worldwide, AD researchers have
intensified their efforts to investigate ways to delay, cure,
or prevent the onset and progression of AD. Objective and
quantitative criteria, so called, biomarkers, are essential to
evaluate the effectiveness of a potential treatment or pre-
vention strategy. Thus, research on exploring biomarkers in
the form of a test of cerebrospinal fluid (CSF) or blood, or
images from brain scans has attracted great attention.

Recent studies have demonstrated that imaging parame-
ters from brain scans are more sensitive and consistent mea-
sures of disease progression than cognitive assessment [32].
Some studies have shown that imaging measures correlate
with cognitive test performance in Mild Cognitive Impair-
ment (MCI)1 and AD - an initial step in the validation of
markers that accurately predict the course of the disease.
Evidently, neuroimaging research offers great potential to
identify the sensitive and specific biomarkers that can iden-
tify individuals early in the course of dementing illness. This
opens up opportunities to implement treatments in the early
stages of disease when intervention may be most beneficial.

The volumetric T1 weighted MRI is a high-resolution struc-
tural imaging technique that allows for the visualization of
brain anatomy with a high degree of contrast between brain
tissue types. It can be used to measure specific structures
(e.g., hippocampus, entorhinal cortex, amygdale, etc.), a
region of interest (ROI) approach, and detect the volume
changes of the structures for AD vs. Normal [21]. Recently,

1Mild Cognitive Impairment (MCI) is a transition stage be-
tween the cognitive changes of normal aging and the more
serious problems related to dementia.
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structural MRI images have been used to quantify reduc-
tions of whole brain volume in sequentially acquired scans
[8]. Promising methodological developments in the analysis
of structural MRI data also include the use of probabilistic
brain maps [3] to compute regional alterations in gray mat-
ter, white matter, CSF, and whole brain, and to examine
cross-sectional difference or longitudinal changes on voxel-
by-voxel basis, an approach referred to as the voxel-based
morphometry (VBM) [36]. Another neuroimaging technique
is the so called positron emission tomography (PET). With
different radioactive tracers, PET provides information on
various physiological, biochemical and/or metabolic processes.
In addition, other types of data, e.g., demographic informa-
tion, such as age, gender, education, genetic makeup (such
as the possession of the allele of Apolipoprotein e4), etc,
have also been shown to be associated with AD.

While promising, the research so far has mainly focused
on studying only one type of neuroimaging, e.g., MRI, fMRI
(functional MRI), or FDG-PET using either region of in-
terest or voxel-based approach [2, 8, 9, 24, 35, 44]. It
is expected that combining different types of neuroimag-
ing will help the prediction. However, even for the same
neuroimaging data, different features constructed by differ-
ent approaches (region of interest versus voxel-based ap-
proaches) might complement each other. Integrating ROI
and voxel-based information from the same type of neu-
roimaging data and incorporating demographic information
is expected to improve the prediction.

In this paper, we propose a kernel method to fuse hetero-
geneous data (different types of features from single MRI
data, together with demographic and genetic information)
for accurately classifying subjects and discovering useful knowl-
edge on biomarkers. More specifically, our main contribu-
tions to the AD research are summarized as follows:

• Dimensionality Reduction via Tensor Factor-
ization: Neuroimages such as those from MRI are
represented as a three-dimensional array, which con-
tains a huge number of features (voxels). Due to the
natural tensor representation of such images, dimen-
sionality reduction based on tensor factorization is one
effective approach for reducing data dimensionality [19,
25, 26]. We propose to apply N -mode SVD [41] and
the out-of-core technique [43] for the factorization.

• Multiple Data Source Fusion via Multiple Ker-
nel Learning: The integration of different types of
features (region of interest and tensor features) from
MRI data and non-imaging data such as demographic
information is expected to improve the prediction ac-
curacy for our AD study. Multiple kernel learning
(MKL) provides a general framework for learning from
multiple data sources. It has been applied for com-
bining various biological data for enhanced biological
inference [22]. We propose to apply a discriminant
analysis-based formulation [47] for the integration.

• Knowledge (Biomarker) Discovery via Multi-
source Feature Selection: In addition to offering
a more accurate prediction of AD, another important
component of the AD study is knowledge gained on
the linkage between structural and functional abnor-
malities. Feature selection [13, 29] is an effective ve-
hicle for such a discovery and the use of multiple data

sources is expected to give a more accurate determina-
tion of biomarkers as well as to aid its understanding.
Traditional feature selection algorithms work on a sin-
gle data source only. We propose to integrate multi-
ple kernel learning and traditional feature selection for
biomarker detection from multiple data sources.

To the best of our knowledge, our uses of (1) tensor factor-
ization for extracting features from AD-related neuroimages;
(2) multiple kernel learning for integrating AD-related mul-
tiple data sources; and (3) feature selection from multiple
data sources are novel contributions to the AD research.

We evaluated the proposed method using data acquired
under the support of ADNI2 from 59 normal control (NC)
and 59 AD patients. The data includes 118 MRI images rep-
resented as a three-dimensional array of size 181×217×181
(in the standard Talairach space and with 1 cubic mm voxel
size), as well as demographic information such as age, gen-
der, and genetic information based on Apolipoprotein E e4
(APOE4). SPM53 was used together with the optimized
voxel-based-morphometry to generate the modulated gray
matter map in the customized template space4. Experi-
mental results show that multiple kernel learning achieves
a considerable improvement in the prediction accuracy in
comparison with classification based on each data source in-
dividually. Results also show that the proposed algorithm
is able to identify a number of brain regions that are known
to be affected by AD.

The rest of the paper is organized as follows. Tensor fac-
torization for feature extraction from MRI data is presented
in Section 2. We introduce multiple kernel learning for het-
erogeneous data fusion in Section 3. Biomarker detection
from multiple data sources is discussed in Section 4. Exper-
imental results are presented in Section 5. Finally, Section 6
concludes this paper with discussions and future work.

2. IMAGE FEATURE EXTRACTION VIA
TENSOR FACTORIZATION

As high resolution 3D data, volumetric MRI data have a
huge number of voxels at the time they were acquired from
each subject. In our VBM pre-processing, we kept the voxel
size in the template space to be in 1 cubic mm resulting
in the image dimension of 181×217×181. Dimensionality
reduction, which extracts a small number of features by re-
moving the irrelevant, redundant, and noisy information,
is crucial for the analysis of such data. Some neuroimag-
ing studies use sub-sampling or a region of interest (ROI)
based approach such as the Automated Anatomical Label-
ing (AAL) [40] to reduce the data dimensionality. Although
the within-ROI variation is ignored, AAL ROI summarizes
the information from multiple brain regions with much re-
duced dimension and these regions are representative over
the whole brain volume. These techniques, however, may
not be able to account for the information variation within
each region of interest. Additionally, a traditional dimen-
sionality reduction technique called Principle Component
Analysis (PCA) [16] has been used widely in many appli-
cations [34, 39], including a well-known adaptation in the

2http://www.loni.ucla.edu/Research/Databases/
3http://www.fil.ion.ucl.ac.uk/spm/
4Gene Alexander’s group processed the MRI images used
in this study. More details on these data can be found in
Section 5.1.
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neuroimaing field, often referred to as the scaled sub-profile
modeling (SSM) [1]. PCA adopts the vector representation
for images by concatenating all voxels within a pre-defined
brain volume into a single vector. One inherent problem
with this approach is that some information on spatial re-
lationships (such as the correlation among different slices of
the 3D image) is not explicitly accounted for. One effective
way to overcome these limitations is to treat a collection
of three-dimensional images as a tensor and apply tensor
factorization [19, 25, 26].

2.1 Background on Tensors
A tensor, also known as multidimensional matrix [45], is

a higher order generalization of a vector (first order tensor)
and a matrix (second order tensor). An Nth-order tensor is
denoted as A ∈ �

I1×I2×···×IN . An element of the tensor A is
denoted as ai1···in···iN , where 1 ≤ in ≤ In, for n = 1, · · · , N .
An Nth-order tensor A is of rank-one if it can be expressed
as the outer product of N vectors:

A = x1 ⊗ x2 ⊗ · · · ⊗ xN , (1)

where xn ∈ �
In , for all 1 ≤ n ≤ N .

A generalization of the product of two matrices is the
product of a tensor and a matrix. The mode-n product
of a tensor A ∈ �

I1×I2×···×IN and a matrix Q ∈ �
Jn×In ,

whose element is denoted as qjnin , where 1 ≤ jn ≤ Jn and
1 ≤ in ≤ In, is a tensor, denoted as

A×n Q ∈ �
I1×···×In−1×Jn×In+1···×IN , (2)

whose entries are given by

(A×n Q)i1···in−1jnin+1···iN =
�
in

ai1···in−1inin+1···iN qjnin .

(3)

Let B ∈ �
I1×I2×···×IN be another tensor, whose general

element is denoted as bi1···in···iN . The scalar product of two
tensors A and B is defined as:

〈A,B〉 =
�
i1

�
i2

· · ·
�
iN

ai1···in···iN bi1···in···iN . (4)

The Frobenius norm of a tensor A is then defined as

||A|| =
�

〈A,A〉. (5)

The mode-n vectors of A are the In-dimensional vectors
obtained from A by varying index in while keeping the
other indices fixed. They form the column vectors of matrix
A(n) ∈ �

In×(I1I2···In−1In+1···IN ) that results from flattening
the tensor A. The n-th rank of A, denoted as rankn(A), is
defined as the dimension of the vector space spanned by the
mode-n vectors: rankn(A) = rank(A(n)).

2.2 Tensor Factorization
Given a tensor A ∈ �

I1×I2×···×IN , a rank-(R1, · · · , RN )
factorization of A is formulated as finding a lower-rank ten-
sor Ã ∈ �

I1×I2×···×IN with rankn(Ã) = Rn ≤ rankn(A),
for all n, such that the following least-squares cost function
is minimized:

Ã = argminÂ
���A− Â

��� . (6)

More specifically, Ã can be expressed as follows:

Ã = C ×1 U (1) ×2 U (2) × · · · ×N U (N), (7)

where U (n) ∈ �
In×Rn has orthonormal columns for n =

1, · · · , N . When Rn is much smaller than In for all n, the
core tensor C and the basis matrices {U (n)}N

n=1 give a com-
pact representation of the original tensor A, resulting in data
compression.

Given the basis matrices {U (n)}N
n=1, the core tensor C can

be readily computed as C = A ×1 (U (1))T · · · ×N (U (N))T .
Thus, the optimization problem focuses on the computation
of the basis matrices only. An iterative approach can be
applied for the computation [25, 43]. Each iterative step
optimizes only one of the basis matrices, while keeping the
other N − 1 basis matrices fixed.

The iterative algorithm above may be computationally
expensive and the solution depends on the initialization. In
this paper, we apply an approximation algorithm called N -
mode SVD [41], which has been applied successfully in com-
puter vision and computer graphics [41, 42]. Define Dn as
an In × In matrix whose (u, v)-th entry (1 ≤ u, v ≤ In) is
given by:�
i1

· · ·
�
in−1

�
in+1

· · ·
�
iN

ai1···in−1uin+1···iN ·ai1···in−1vin+1···iN ,

where ai1···in−1uin+1···iN and ai1···in−1vin+1···iN are elements

of the Nth-order tensor A ∈ �
I1×I2×···×IN . It follows that

Dn is a symmetric and positive semi-definite matrix. Let
Dn = UnΣnUT

n be the SVD of Dn. Denote U (n) the basis
matrix, which consists of the first Rn columns of Un. The
approximation of the original tensor A is given by

Ã = C ×1 U (1) ×2 U (2) × · · · ×N U (N), (8)

where C = A×1 (U (1))T ×2 (U (2))T × · · · ×N (U (N))T .
Since the size of the tensor A considered in this paper

can easily exceed the memory capacity of a single machine,
we develop an out-of-core algorithm by partitioning a tensor
into smaller blocks as in [43].

3. MULTIPLE DATA SOURCE FUSION
Different neuroimaging features (voxel-based tensor and

ROI-based AAL features from the same data source) may
capture different but complementary characteristics of the
data. For example, the voxel-based tensor features focus
more on the global information, while AAL features focus
on representative multiple ROI (local) information, though
potential information overlaps exist between these two types
of data (generated from the same MRI data set). A joint
analysis of these data can potentially exploit their comple-
mentary information and improve the prediction. Such pre-
diction can be further improved by incorporating additional
non-imaging data sources, such as demographic information.

Multiple Kernel Learning (MKL) provides a general frame-
work for learning from multiple data sources [23]. MKL
works by first constructing a kernel from each of the data
sources and then combining these kernels based on a cer-
tain criterion for improved classification performance. In
addition to the SVM-based formulation in [23], we apply a
discriminant analysis-based formulation.

3.1 Background on Kernel Methods
Kernel methods work by embedding the input data into

some high-dimensional feature space and they are generally
formulated as convex optimization problems [37, 38]. The
key fact underlying the success of kernel methods is that the
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embedding into feature space can be determined uniquely by
specifying a kernel function that computes the dot product
between data points in the feature space implicitly. In other
words, the kernel function implicitly defines the nonlinear
mapping to the feature space and expensive computations in
the high-dimensional feature space can be avoided by eval-
uating the kernel function in the original attribute space.
Thus one of the central issues in kernel methods is the se-
lection of kernels.

We call K : X × X → R a kernel function [37], where X
is the input space, if it satisfies the finitely positive semi-
definite property: for any x1, · · · , xm ∈ X , the Gram ma-
trix G ∈ �

m×m , defined by Gij = K(xi, xj) is symmetric
and positive semidefinite. Any kernel function K implicitly
maps the input set X to a high-dimensional (possibly in-
finite) Hilbert space HK equipped with the inner product
(·, ·)HK through a mapping φK : X → HK as

K(x, z) = (φK(x), φK(z))HK
.

In binary classifications, the algorithms learn a classifier f :
X → {−1, +1} whose decision boundary between the two
classes is affine in the feature space: f(x) = sgn(wT φK(x)+
b), where w ∈ K is the vector of feature weights, b ∈ � is
the intercept, and sgn(u) = +1, if u > 0, and −1 otherwise.

3.2 Optimal Kernel Combination
Assume that we are given p kernel matrices G1, · · · , Gp.

In MKL, the optimal kernel matrix G∗ lies in the set G
defined as

G =

�
G

�����G =

p�
i=1

θiGi,

p�
i=1

θi ri = 1, θi ≥ 0

�
, (9)

where ri = trace(Gi). In the following, we assume that all
kernel matrices have been centered. This is equivalent to
centering the data as the pre-processing step.

For binary-class problems, we are given {x+
1 , · · · , x+

m+}
and {x−

1 , · · · , x−
m−}, the collections of data points from the

positive and negative (AD and normal) classes, respectively.
The total number of data points is m = m+ + m−. For a
given kernel function K, the basic idea of kernel discrim-
inant analysis with regularization, called RKDA [47] is to
find a direction w in the feature space HK onto which the
projections of the two sets {φK(x+

i )}m+
i=1 and {φK(x−

i )}m−
i=1

are well separated. Define the centroids of the two classes
in the feature space as follows:

μ+
K =

m+�
i=1

φK(x+
i )/m+, μ−

K =

m−�
i=1

φK(x−
i )/m−.

In RKDA, the separation between the two classes is mea-
sured by the ratio of the variance (wT (μ+

K − μ−
K))2 between

the classes to the variance wT ΣKw within the classes, where
ΣK = φK(X) P φK(X)T /m is the covariance matrix of the
data in the feature space and φK(X) is the data matrix in
the feature space. Specifically, RKDA in the binary-class
case maximizes the following objective function:

F (w, K) = (wT (μ+
K − μ−

K))2/wT (ΣK + μI)w, (10)

where μ > 0 is a regularization parameter.
It can be shown [47] that for a given set of p centered ker-

nel matrices G1, · · · , Gp, the optimal kernel matrix G∗ =�p
i=1 θiGi ∈ G that optimizes the criterion in Eq. (10)

can be found by solving the following Semidefinite Program
(SDP):

min
θ,t

t

subject to

�
I + 1

μ

�p
i=1 θiGi a

aT t

	
	 0,

θ ≥ 0, θT r = 1, (11)

where θ = [θ1, · · · , θp]
T , r = [trace(G1), · · · , trace(Gp)]

T ,
and

a = [1/m+, · · · , 1/m+,−1/m−, · · · ,−1/m−]T ∈ �
m .

The problem can be further formulated as a quadratically
constraint quadratic programming (QCQP) problem [48],
which is more efficient to solve than SDP.

4. BIOMARKER DETECTION FROM
MULTIPLE DATA SOURCES

Recall from the introduction that identifying biomarkers
which are sensitive to AD onset or progression [31] is ex-
tremely important in AD study. Feature selection is com-
monly used for selecting a small subset of features for build-
ing a comprehensible learning model with good generaliza-
tion performance [13, 29, 30]. Such a small subset of features
can then be used as ‘biomarkers’. We propose to apply fea-
ture selection from multiple data sources, including the AAL
data and the voxel-based tensor data, both from the same
single MRI modality, as well as various types of demographic
information.

4.1 Background on Feature Selection
Given a data set with d features {F1, F2, ..., Fd}, the task

of a feature selection algorithm is to remove as many irrel-
evant (and redundant) features as it can and find a feature
subset {Fj1 , ..., Fjr} (r < d), such that with dimensionally-
reduced data, a learning algorithm can achieve similar or
better performance. Feature selection has been used widely
in many applications including text mining [11, 17], image
processing [12], and bioinformatics [6, 14, 27, 28]. Tradi-
tional feature selection algorithms work on a single data
source only. The challenge is how to develop effective fea-
ture selection algorithms from multiple data sources, called
“multi-source feature selection”.

4.2 Feature Selection from Multiple Data
Sources

Assume that among the p data sources {Di}p
i=1 of m in-

stances (subjects), Dt (1 ≤ t ≤ p) is the target for feature
(biomarker) selection. In our study, p = 5 data sources are
involved. In feature selection from multiple data sources, we
aim to remove irrelevant (and redundant) features accord-
ing to the global pattern extracted from all p data sources.
Clearly this is different from standard feature selection. To
the best of our knowledge, feature selection from multiple
data sources has not been well-addressed in the literature.

We propose to use multiple kernel learning for feature se-
lection from multiple data sources. Specifically, multiple
kernel learning is applied for information fusion from multi-
ple data sources for pattern extraction. The combined kernel
matrix extracts the pattern of the data in the form of pair-
wise similarities, which can then be used as the input for a
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generic feature selection algorithm. We plan to study two
feature selection algorithms, SPEC [50] and ReliefF [20], as
both algorithms use the pairwise similarities (or distances)
and the feature vectors as their input.
SPEC is a framework for both supervised and unsupervised
feature weighting [50]. Given a data set D, the similarities
among instances can be captured by a set of pairwise in-
stance similarities � and its induced graph � . SPEC treats
features as functions defined on D and selects features in
terms of the smoothness on the manifold formed by the ob-
served data instances. The smoothness of a feature fi is
evaluated by comparing the feature with the spectrums of
L, the normalized Laplacian matrix of � :

r(fi) = ϕ (fi; γ(λ1), . . . , γ(λm); ξ1, . . . , ξm) . (12)

In Eq. (12), (λi, ξi)i=1,... ,m denotes the spectrum (or eigen)

decomposition of the normalized Laplacian matrix L. γ(·)
is an increasing function which is used to modify the eigen-
values of L and has an effect of removing noise [49]. ϕ(·) is
a predefined smoothness measure function, which compares
the feature with the spectrums of L. In [15, 50], a robust
smoothness measure function is defined as:

ϕ(fi) =

m�
j=2

α2
jγ(λj)

m�
j=2

α2
j

=

f i

T
γ(L) 
f i

1 −
� 
f i

T
ξ1

�2 ; (13)

f̂i =
���D 1

2 fi

���−1

·
�
D

1
2 fi

�
, αj = ξT

j f̂i (14)

According to spectral clustering theories [33], the eigenval-
ues of L measure the separability of the components of the
graph � and the eigenvectors are the corresponding soft clus-
ter indicators. We compare the normalized feature vector
f̂i with the eigenvectors of L (measured by αj ’s defined in

Eq. (14)). The intuition behind Eq. (13) is that the better f̂i

aligns to the leading eigenvectors of L, the better the feature
fi can separate the data as a function defined on D. Note
that in Eq. (13), we ignore the first eigenvector of L. The
reason is that the trivial eigenvector ξ1 only carries density
information around instances and does not determine sep-
arability. In the application, the set � of pairwise instance
similarities can be obtained from the learned kernel matrix
from the last section.
ReliefF is a well-known supervised feature selection algo-
rithm derived as an extension of Relief [18]. It determines
the relevance of a feature according to its contribution to
the hypothesis margin [4] of the observed data. In ReliefF,
the relevance of a feature fi is defined as:

r(fi) =
1

2

m�
t=1

(‖xt,i − NM(xt)i‖ − ‖xt,i − NH(xt)i‖).

where xt,i denotes the value of instance xt on feature fi,
NH(x) and NM(x) denote the nearest points to x in the
data with the same and different label respectively, and ‖ · ‖
is a distance measurement. In this application, the neighbor-
hoods of instances can be determined by the learned kernel
matrix from the last section.

5. EXPERIMENTS
We evaluate the effectiveness of the proposed methods on

a collection of 118 samples consisting of 59 normal healthy
controls and 59 AD patients.

5.1 Data Sources and Kernels
Five feature (data) sources are used in this study, in-

cluding tensor and AAL features from MRI images, two
types of demographic information related to AD: age and
gender, and genetic information based on Apolipoprotein
E e4 (APOE4)5. It is well known that Apolipoprotein E
e4 (APOE4) is a risk factor for AD. Compared to APOE4
non-carriers whose onset age for AD of 84 and risk of 20%,
people with one/two copy/copies of APOE4 get the dis-
ease at younger age (onset age of 75/68) and increased risk
(47%/91%). We derive linear kernels for tensor and AAL
features. A Gaussian kernel with an appropriate parameter
value is used for the age feature. A simple binary kernel ma-
trix is constructed based on gender feature: if two samples
share a common gender, their corresponding kernel matrix
entry is 1, otherwise it is set to 0. We use ApoE Genotyp-
ing Allele 1 and Allele 2 to divide the samples into three
groups: APOE4 non-carriers, heterozygotes, and homozy-
gote groups. A kernel matrix similar to the one for the
gender feature is then constructed.

5.2 Performance of Tensor Factorization
We apply tensor factorization based on N -mode SVD for

extracting features from the 118 MRI images. The whole
collection of images can be represented as a 4th order tensor
A ∈ �

I1×I2×I3×I4 with I1 = 181, I2 = 217, I3 = 181, and
I4 = 118. The fourth dimension of the 4th order tensor,
which corresponds to the 118 subjects, is fixed (i.e., R4 =
I4 = 118), while the other three dimensions (I1, I2, and
I3) which correspond to the size of a single 3D image are
reduced to R1, R2, and R3, respectively. Following Eq. (8),

the approximation tensor Ã is given as

Ã = C ×1 U (1) ×2 U (2) ×3 U (3), (15)

where C ∈ �
R1×R2×R3×I4 is the core tensor and U (i) ∈

�
Ii×Ri is the basis matrix along the i-th dimension. The

j-th slice of Ã along the fourth dimension is of size R1 ×
R2 × R3, which is the compressed representation for the j-
th image.

We use the Tensor Toolbox in [5] as the building block
for our implementation. The factorization performance is
measured in terms of compression ratio and information loss
[10, 46]. The information loss (IL) is given by

IL =

���A− Â
���

‖A‖ , (16)

and the compression ratio (CR) is given by

CR =
I1I2I3m

R1R2R3m + I1R1 + I2R2 + I3R3
, (17)

where m = I4 = 118 is the total number of samples.
For simplicity, we set the reduced dimensionalities, i.e, R1,

R2, and R3 to a common value in our experiment. The result
is summarized in Table 1. We can observe that we achieve a
compression ratio of about 263 when the size of each image
is reduced to 30 × 30 × 30, while the majority (96%) of the
information from the original data is kept. This significantly

5Human apolipoprotein E (apoE) is a 34-kDa protein con-
taining 299 amino acid residues. There are three major iso-
forms of human apoE (namely apoE2, apoE3, and apoE4),
which are the products of three alleles (e2, e3, and e4) at a
single gene locus on chromosome 19q13.2.
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Table 1: Performance of tensor factorization on 118
MRI images.

Reduced Dimension Compression Ratio Information Loss
20 × 20 × 20 889 22%
30 × 30 × 30 263 4%
40 × 40 × 40 111 1%

reduces the memory and disk space, which is critical when
analyzing and transmitting large volume neuroimaging.

To visually evaluate the compression performance, we ran-
domly pick one image from the data set. We compare the
original and reconstructed images (reduced dimension is 20×
20 × 20) using four slices in three different views (sagittal,
coronal, and axial), as shown in Figure 1. We can observe
from the figure that the reconstructed slices are visually
very similar to the original ones, even with a compression
ratio as high as 889. In the following experiment, we set
R1 = R2 = R3 = 20, resulting in a 8000-dimensional repre-
sentation for each MRI image, as using a larger dimension-
ality doesn’t improve the performance much.

5.3 Performance of MKL for AD Prediction
In this experiment, we evaluate the multiple kernel learn-

ing algorithm for integrating five data sources denoted as
tensor, AAL, age, gender, and APOE4. The study is per-
formed by repeated random splitting of the data into train-
ing and test sets of ratio of 2 : 1. To reduce the variability,
the splitting is repeated 20 times and the results are aver-
aged.

Table 2 presents the prediction performance of various
algorithms (RKDA and SVM6 using each of the five data
sources by itself and the combination of them based on
MKL) in terms of sensitivity and specificity. We can ob-
serve from the table that multiple kernel learning based ap-
proaches (using the combination of all five data sources),
outperform all other methods based on a single data source
in terms of both sensitivity and specificity. For example,
RKDA-based MKL achieves a sensitivity about 0.950, which
is significantly higher than RKDA based on any single data
source. We can obtain the same observation in the case of
SVM. This implies that different data sources contain com-
plementary information and the integration of them leads
to a significant improvement for AD prediction.

5.4 Performance of Biomarker Detection
In this experiment, we evaluate the proposed algorithm

for selecting features based on learning from multiple data
sources. All five data sources are used to learn the kernel
Gram matrix and AAL is used as the target data source
with 116 brain regions as the feature set. We also report
the feature selection result using AAL data source only for
comparison.

Table 3 presents the top 20 regions (features) obtained
by two feature selection algorithms: SPEC and ReliefF us-
ing G2 (the kernel matrix constructed from the AAL data
source only) and G∗ (combined kernel matrix from all five
data sources based on RKDA). It is important to note that

6We used the LIBSVM implementation in [7] and the SVM-
based MKL in [23] with the regularization parameter esti-
mated through 5-fold cross-validation.

Table 2: Performance of MKL based on RKDA and
SVM in comparison with RKDA and SVM based
on each of the five data sources alone. Prediction in
terms of sensitivity and specificity.

Method Data Source Sensitivity Specificity
Tensor 0.785 0.790
AAL 0.605 0.760
APOE4 0.705 0.415

RKDA Gender 0.740 0.545
Age 0.505 0.595
Combination 0.950 0.895
Tensor 0.800 0.795
AAL 0.780 0.845

SVM APOE4 0.745 0.680
Gender 0.440 0.460
Age 0.665 0.515
Combination 0.945 0.850

the comparison is based on the assumption that we use pre-
existing AD domain knowledge from our collaborators at
Banner Alzheimer’s Institute at Phoenix as the gold stan-
dard. It is clear from Table 3 that both SPEC+G∗ and
ReliefF+G∗ based on MKL perform significantly better than
their counterparts SPEC+G2 and ReliefF+G2 based on a
single data source. For example, among the top 20 re-
gions from SPEC+G∗, 16 of them are confirmed to be AD-
related, while there are only 11 AD-related regions from
SPEC+G2. Figure 2 highlights the top 12 regions detected
by SPEC+G∗.

Our multiple kernel learning procedure not only provides
adequate distinction of AD and normal subjects as shown
in Table 2, but also identifies regions that play more signifi-
cant roles than others in such classification (as shown in Ta-
ble 3). These brain regions, interestingly enough, included
left/right parahippocampla, hippocampus, amygdala, L/R
Fusiform, various temporal regions, lingual, and occipital.
It is worth noting that our MKL procedure was blind to the
prior knowledge of brain regions associated with AD. Never-
theless, the regions that are known to be affected by AD are
those that have contributed the most in our MKL analysis.
This further confirms the promise of MKL for data fusion
for the AD study.

6. DISCUSSIONS AND CONCLUSION
In this paper, we have proposed a kernel method for inte-

grating heterogeneous data for AD prediction. We further
extend the kernel framework for selecting features (biomark-
ers) from heterogeneous data sources. Our experiments show
the integration of multiple data sources leads to a consider-
able improvement in the prediction accuracy. Results also
show that the proposed multi-source feature selection algo-
rithm identifies biomarkers (brain regions) that play more
significant roles than others in AD diagnosis.

The tensor factorization used in this paper assumes no
prior knowledge on the importance of entries from a given
tensor. A uniform weight is applied to all entries. In our AD
study, certain collections of entries in the brain are known to
be more important. It is thus desirable to put higher weights
to these voxels. We plan to examine weighted tensor factor-
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Figure 1: Original and reconstructed images (reduced dimension is 20 × 20 × 20) shown as slices in sagittal
view (rows 1 and 2), in coronal view (rows 3 and 4), and in axial view (rows 5 and 6). The first, third, and
fifth rows represent 4 slices from the original image, while the second, fourth, and sixth rows represent the
corresponding 4 slices from the reconstructed image. Observe that, even with a compression ratio as high as
889, the reconstructed slices are visually very similar to the original ones.
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Table 3: The top 20 regions (ranked from top to bottom) from SPEC and ReliefF using G2 (kernel matrix
constructed from the AAL data source alone) and G∗ (combined kernel matrix from all five data sources
based on RKDA). Regions with bold typeface are relevant according to existing AD domain knowledge.

SPEC+G2 SPEC+G∗ ReliefF+G2 ReliefF+G∗

TempPlMidL ParaHippR HippR AmygdL
TempPlMidR FusiformR AmygdL AmygdR
FusiformR ParaHippL AmygdR HippR
FusiformL FusiformL HippL HippL
TempPlSupL TempInfR Cereb8L Vermis9
TempInfR AmygdR Cereb9L ParaHippL
LingualL TempInfL PutamenR ParaHippR
Cereb6L TempPlMidR PutamenL TempPlSupR
LingualR LingualR Vermis9 TempPlSupL
CerebCr1L TempPlMidL Cereb8R TempInfR
ParaHippR OccInfR InsulaL Cereb9L
TempInfL TempPlSupL PallidumR Cereb8L
OccInfR LingualL PallidumL Cereb9R
ParaHippL OccInfL Cereb7bR Vermis10
TempPlSupR AmygdL InsulaR FusiformL
Cereb6R HippR Cereb7bL TempPlMidR
CerebCr1R TempPlSupR CuneusR TempInfL
Vermis3 TempMidR Vermis8 TempPlMidL
Vermis45 CerebCr1L Cereb9R Vermis8
CerebCr2L Cereb6L TempMidL Vermis7

ization in the future. In this study, we have focused on
MRI data. While MRI provides anatomical/structural in-
formation about the disease, the complementary PET tech-
nique with the positron-emitting radiotracer FDG allows re-
searchers to examine the glucose hypometabolic pattern in
AD patients in comparison with normals by measuring the
cerebral metabolic rate for glucose (CMRgl). We expect
that the fusion of MRI data (structural neuroimaging data)
with PET data (functional neuroimaging data) as well as
demographic data will further improve the prediction accu-
racy, and provide a more sensitive measure of longitudinal
changes as well as a more powerful indication of any poten-
tial treatment/drug evaluations.
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