
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 7
Event-Driven Pages

2

Event-driven Pages

one popular feature of the Web is its interactive nature
 e.g., you click on buttons to make windows appear
 e.g., you enter credit card information in a form and submit it

pages that respond to user actions such as mouse clicks or form entries are
known as event-driven pages
 JavaScript code can be combined with HTML elements such as buttons, text

fields, and text areas to produce event-driven pages

an event handler is an HTML element that can be programmed to respond to
a user’s actions
 the simplest event handler is a button
 a button can be associated with JavaScript code that will execute when the

button is clicked

3

Buttons and Forms

general form of a button element:

<input type="button" value="BUTTON_LABEL" onclick="JAVASCRIPT_CODE" />

 the TYPE attribute of the INPUT element identifies the element to be a button
 the VALUE attribute specifies the text label that appears on the button
 the ONCLICK attribute specifies the action to take place

 any JavaScript statement(s) can be assigned to the ONCLICK attribute
 this can be (and frequently is) a call to a JavaScript function

for example,

<input type="button" value="Click for Free Money"

 onclick="alert('Yeah, right.');" />

 the predefined alert function displays a message in a new window
 here, the message 'Yeah, right.' is displayed at the click of the button

 a string can be denoted using either double("…") or single ('…') quotes
 here, single quotes must be used to avoid confusion with the ONCLICK quotes

4

Random Number Example

recall the task of generating random numbers
 earlier, we did this by embedding JavaScript code in SCRIPT tags
 each time the page was loaded in the browser, the code was executed and the

random number was written into the HTML text using document.write

DRAWBACK: the user had to reload for each random number

ALTERNATIVE: place a button in the page with associated code for generating
and displaying the random number
 each time the user clicks the button, the code for generating and displaying the

number is executed

5

when the button is clicked, two JavaScript statements are executed
 a number in the range 1..100 is randomly selected
 that number is displayed in an alert window

LuckyForm Example

6

Output via Text Boxes

a button provides a simple mechanism for user interaction in a Web page
 by clicking the button, the user initiates some action

a text box is an event-handler that can display text (a word or phrase)
 unlike an alert window, the text box appears as a box embedded in the page
 text can be written to the box by JavaScript code (i.e., the box displays output)

for example, we could reimplement the
lucky number page using a text box

the text box containing the random
number is embedded in the page

doesn't require the user to close the
alert window after each number

7

Output via Text Boxes

general form of a text box element:

 <input type="text" id="BOX_NAME" size="NUM_CHARS" value="INITIAL_TEXT" />

 the TYPE attribute of the INPUT element identifies the element to be a text box
 the ID attribute gives the element an identifier so that it can be referenced
 the SIZE attribute specifies the size of the box (number of characters that fit)
 the VALUE attribute specifies text that initially appears in the box

to display text in a text box, a JavaScript assignment is used to assign to its
value attribute
 as part of the assignment, must specify the absolute name of the box
 the general form is:

 document.getElementById('BOX_NAME').value = VALUE_TO_BE_DISPLAYED;

8

when the button is
clicked, the function call
DisplayNumber(); is
executed

the function generates
the random number and
assigns it to the text
box

as a result, each button
click yields a new
number in the box

Text Box for Displaying Output

9

Input via Text Boxes

text boxes can also be used for receiving user input
 the user can enter text directly into the box
 that text can then be accessed by JavaScript code via the absolute

name of the box

document.geElementById('BOX_NAME').value

 note that the value retrieved from a text box is always a string
 if the user enters a number, say 93, then the absolute name will access "93"
 similar to prompt, you must use parseFloat to convert the string to its

numeric value

example: we can revisit our temperature conversion page
 the user enters the Fahrenheit temperature in a text box
 at the click of a button, the input is accessed and converted to Celsius
 another text box is used to display the converted temperature

10

fahrBox is used for input

the button's ONCLICK
attribute specifies the
code for converting the
temperature

celsiusBox is used for
output

Text Boxes for Input

11

Input and Output

note: the same text box can
be used for both input and
output

 can modify the conversion
page to allow for entering a
temperature in either box,
then convert to the other

 can write a simple page in
which the user can enter a
number, then double it by
clicking a button

12

Text Areas

a text area is similar to a text box but it can contain any number of text lines

general form of a text area element:

<textarea name="TEXTAREA_NAME" rows=NUM_ROWS cols=NUM_COLS wrap="virtual">

INITIAL_TEXT

</textarea>

 the NAME attribute gives the element a name so that it can be referenced
 the ROWS attribute specifies the height (number of text lines) of the area
 the COLS attribute specifies the width (number of characters) of the area
 the WRAP attribute ensures that the text will wrap from one line to the next

instead of running off the edge of the text area

unlike a text box, opening and closing tags are used to define a text area
 any text appearing between the tags will be the initial text in the text area
 otherwise, the contents of a text area are accessed/assigned in the same way

13

the user enters first and
last names into text boxes

a long greeting is
constructed using the
names and assigned to the
text area

Input/Output via Text Areas

14

Dynamic Images

just as you can use user-initiated events to change the contents of
 text areas and text boxes, you can also dynamically modify images

causes the image stored in the file happy.gif to appear in the page

you can change the image by reassigning its SRC attribute
 similar to the way that text boxes/areas have their VALUE attribute reassigned

document.getElementById('faceImg').src = "sad.gif";

replaces happy.gif with sad.gif

15

Dynamic Image Example

initially the image
is set to
happy.gif

when a button is
clicked, images is
assigned a new
SRC file

16

Simplifying buttons

functions provide a mechanism for simplifying complex buttons such as this

recall from Chapter 5:
 functions minimize the amount of detail that has to be considered

 e.g., can use Math.sqrt without worrying about how it works
 functions reduce the length and complexity of code

 e.g., a single call to Math.sqrt replaces the underlying complex algorithm

consider the button from greetbox.html:

 the size of ONCLICK attribute makes the button complex and difficult to read
 plus, must be careful with nested quotes ("…" vs. '…')

17

Simple user-defined functions

in addition to JavaScript's predefined functions, the user can define new
functions in the HEAD section and call them within the page

we will explore user-defined functions fully in Chapter 9
 for now, the following simple form suffices for simplifying buttons

 a function definition begins with the word function followed by its name and ()
 a function name should be descriptive of the task being performed

 lines beginning with // are comments that describe the function's behavior
 comments are ignored by the interpreter, but make code more user-readable

 the statements to be executed when the function is called are placed between the
curly braces

18

Greeting revisited

the code from the button is
moved to the user-defined
Greet function

as a result, the button is
greatly simplified

GENERAL RULE: if more than
one statement is to be
associated with a button,
define a separate function

