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Chapter 7
Event-Driven Pages
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Event-driven Pages

one popular feature of the Web is its interactive nature
 e.g., you click on buttons to make windows appear
 e.g., you enter credit card information in a form and submit it 

pages that respond to user actions such as mouse clicks or form entries are 
known as event-driven pages
 JavaScript code can be combined with HTML elements such as buttons, text 

fields, and text areas to produce event-driven pages

an event handler is an HTML element that can be programmed to respond to 
a user’s actions
 the simplest event handler is a button
 a button can be associated with JavaScript code that will execute when the 

button is clicked
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Buttons and Forms

general form of a button element:

<input type="button" value="BUTTON_LABEL" onclick="JAVASCRIPT_CODE" />

 the TYPE attribute of the INPUT element identifies the element to be a button
 the VALUE attribute specifies the text label that appears on the button
 the ONCLICK attribute specifies the action to take place

 any JavaScript statement(s) can be assigned to the ONCLICK attribute
 this can be (and frequently is) a call to a JavaScript function

for example,

<input type="button" value="Click for Free Money" 

                     onclick="alert('Yeah, right.');" />

 the predefined alert function displays a message in a new window
 here, the message 'Yeah, right.' is displayed at the click of the button

 a string can be denoted using either double("…") or single ('…') quotes
 here, single quotes must be used to avoid confusion with the ONCLICK quotes
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Random Number Example

recall the task of generating random numbers
 earlier, we did this by embedding JavaScript code in SCRIPT tags
 each time the page was loaded in the browser, the code was executed and the 

random number was written into the HTML text using document.write

DRAWBACK: the user had to reload for each random number

ALTERNATIVE: place a button in the page with associated code for generating 
and displaying the random number
 each time the user clicks the button, the code for generating and displaying the 

number is executed
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when the button is clicked, two JavaScript statements are executed
 a number in the range 1..100 is randomly selected
 that number is displayed in an alert window

LuckyForm Example
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Output via Text Boxes

a button provides a simple mechanism for user interaction in a Web page
 by clicking the button, the user initiates some action

a text box is an event-handler that can display text (a word or phrase)
 unlike an alert window, the text box appears as a box embedded in the page
 text can be written to the box by JavaScript code (i.e., the box displays output)

for example, we could reimplement the 
lucky number page using a text box

the text box containing the random 
number is embedded in the page

doesn't require the user to close the 
alert window after each number
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Output via Text Boxes

general form of a text box element:

 <input type="text" id="BOX_NAME" size="NUM_CHARS" value="INITIAL_TEXT" />

 the TYPE attribute of the INPUT element identifies the element to be a text box
 the ID attribute gives the element an identifier so that it can be referenced
 the SIZE attribute specifies the size of the box (number of characters that fit)
 the VALUE attribute specifies text that initially appears in the box

to display text in a text box, a JavaScript assignment is used to assign to its 
value attribute
 as part of the assignment, must specify the absolute name of the box
 the general form is:

 document.getElementById('BOX_NAME').value = VALUE_TO_BE_DISPLAYED;
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when the button is 
clicked, the function call 
DisplayNumber(); is 
executed

the function generates 
the random number and 
assigns it to the text 
box

as a result, each button 
click yields a new 
number in the box

Text Box for Displaying Output
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Input via Text Boxes

text boxes can also be used for receiving user input
 the user can enter text directly into the box
 that text can then be accessed by JavaScript code via the absolute 

name of the box

document.geElementById('BOX_NAME').value

 note that the value retrieved from a text box is always a string
 if the user enters a number, say 93, then the absolute name will access "93"
 similar to prompt, you must use parseFloat to convert the string to its 

numeric value 

example: we can revisit our temperature conversion page
 the user enters the Fahrenheit temperature in a text box
 at the click of a button, the input is accessed and converted to Celsius
 another text box is used to display the converted temperature
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fahrBox is used for input

the button's ONCLICK 
attribute specifies the 
code for converting the 
temperature

celsiusBox is used for 
output

Text Boxes for Input
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Input and Output

note: the same text box can 
be used for both input and 
output

 can modify the conversion 
page to allow for entering a 
temperature in either box, 
then convert to the other

 can write a simple page in 
which the user can enter a 
number, then double it by 
clicking a button
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Text Areas

a text area is similar to a text box but it can contain any number of text lines

general form of a text area element:

<textarea name="TEXTAREA_NAME" rows=NUM_ROWS cols=NUM_COLS wrap="virtual">

INITIAL_TEXT

</textarea>

 the NAME attribute gives the element a name so that it can be referenced
 the ROWS attribute specifies the height (number of text lines) of the area
 the COLS attribute specifies the width (number of characters) of the area
 the WRAP attribute ensures that the text will wrap from one line to the next 

instead of running off the edge of the text area

unlike a text box, opening and closing tags are used to define a text area
 any text appearing between the tags will be the initial text in the text area
 otherwise, the contents of a text area are accessed/assigned in the same way
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the user enters first and 
last names into text boxes

a long greeting is 
constructed using the 
names and assigned to the 
text area

Input/Output via Text Areas
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Dynamic Images

just as you can use user-initiated events to change the contents of 
   text areas and text boxes, you can also dynamically modify images

<img id="faceImg" src="happy.gif" alt="Happy Face" />

causes the image stored in the file happy.gif to appear in the page

you can change the image by reassigning its SRC attribute
 similar to the way that text boxes/areas have their VALUE attribute reassigned

document.getElementById('faceImg').src = "sad.gif";

replaces happy.gif with sad.gif
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Dynamic Image Example

initially the image 
is set to 
happy.gif 

when a button is 
clicked, images is 
assigned a new 
SRC file
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Simplifying buttons

functions provide a mechanism for simplifying complex buttons such as this

recall from Chapter 5:
 functions minimize the amount of detail that has to be considered

 e.g., can use Math.sqrt without worrying about how it works
 functions reduce the length and complexity of code

 e.g., a single call to Math.sqrt replaces the underlying complex algorithm

consider the button from greetbox.html:

 the size of ONCLICK attribute makes the button complex and difficult to read
 plus, must be careful with nested quotes ("…" vs. '…')
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Simple user-defined functions

in addition to JavaScript's predefined functions, the user can define new 
functions in the HEAD section and call them within the page

we will explore user-defined functions fully in Chapter 9 
 for now, the following simple form suffices for simplifying buttons

 a function definition begins with the word function followed by its name and ()
 a function name should be descriptive of the task being performed

 lines beginning with // are comments that describe the function's behavior
 comments are ignored by the interpreter, but make code more user-readable

 the statements to be executed when the function is called are placed between the 
curly braces
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Greeting revisited

the code from the button is 
moved to the user-defined 
Greet function

as a result, the button is 
greatly simplified

GENERAL RULE: if more than 
one statement is to be 
associated with a button, 
define a separate function


