
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 8
Algorithms and Programming Languages

2

Machine Languages

the first programming languages were known as machine languages
 a machine language consists of instructions that correspond directly to the

hardware operations of a particular machine
 i.e., instructions deal directly with the computer’s physical components including main

memory, registers, memory cells in CPU
 very low level of abstraction

 machine language instructions are written in binary
 programming in machine language is tedious and error prone
 code is nearly impossible to understand and debug

excerpt from a machine language program:

3

High-Level Languages

in the early 1950’s, assembly languages evolved from machine languages
 an assembly language substitutes words for binary codes
 much easier to remember and use words, but still a low level of abstraction

(instructions correspond to hardware operations)

in the late 1950's, high-level languages were introduced
 high-level languages allow the programmer to write code closer to the way

humans think (as opposed to mimicking hardware operations)
 a much more natural way to solve problems
 plus, programs are machine independent

two high level languages that perform the same task (in JavaScript and C++)

4

Program Translation

using a high-level language, the programmer is able to reason at a high-level
of abstraction

 but programs must still be translated into machine language that the
computer hardware can understand/execute

there are two standard approaches to program translation
 interpretation
 compilation

real-world analogy: translating a speech from one language to another
 an interpreter can be used provide a real-time translation

 the interpreter hears a phrase, translates, and immediately speaks the translation
 ADVANTAGE: the translation is immediate
 DISADVANTAGE: if you want to hear the speech again, must interpret all over again

 a translator (or compiler) translates the entire speech offline
 the translator takes a copy of the speech, returns when the entire speech is translated
 ADVANTAGE: once translated, it can be read over and over very quickly
 DISADVANTAGE: must wait for the entire speech to be translated

5

Speech Translation

Interpreter:

Translator (compiler):

6

Interpreters

for program translation, the interpretation approach relies on a program
known as an interpreter to translate and execute high-level statements

 the interpreter reads one high-level statement at a time, immediately
translating and executing the statement before processing the next one

 JavaScript is an interpreted language

7

Compilers

the compilation approach relies on a program known as a compiler to
translate the entire high-level language program into its equivalent
machine-language instructions

 the resulting machine-language program can be executed directly on the
computer

 most languages used for the development of commercial software employ the
compilation technique (C, C++)

8

Interpreters and Compilers

tradeoffs between interpretation and compilation

interpreter
 produces results almost immediately
 particularly useful for dynamic, interactive features of web pages
 program executes more slowly (slight delay between the execution of

statements)

compiler
 produces machine-language program that can run directly on the underlying

hardware
 program runs very fast after compilation
 must compile the entire program before execution
 used in large software applications when speed is of the utmost importance

