
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 8
Algorithms and Programming Languages

2

Machine Languages

the first programming languages were known as machine languages
 a machine language consists of instructions that correspond directly to the

hardware operations of a particular machine
 i.e., instructions deal directly with the computer’s physical components including main

memory, registers, memory cells in CPU
 very low level of abstraction

 machine language instructions are written in binary
 programming in machine language is tedious and error prone
 code is nearly impossible to understand and debug

excerpt from a machine language program:

3

High-Level Languages

in the early 1950’s, assembly languages evolved from machine languages
 an assembly language substitutes words for binary codes
 much easier to remember and use words, but still a low level of abstraction

(instructions correspond to hardware operations)

in the late 1950's, high-level languages were introduced
 high-level languages allow the programmer to write code closer to the way

humans think (as opposed to mimicking hardware operations)
 a much more natural way to solve problems
 plus, programs are machine independent

two high level languages that perform the same task (in JavaScript and C++)

4

Program Translation

using a high-level language, the programmer is able to reason at a high-level
of abstraction

 but programs must still be translated into machine language that the
computer hardware can understand/execute

there are two standard approaches to program translation
 interpretation
 compilation

real-world analogy: translating a speech from one language to another
 an interpreter can be used provide a real-time translation

 the interpreter hears a phrase, translates, and immediately speaks the translation
 ADVANTAGE: the translation is immediate
 DISADVANTAGE: if you want to hear the speech again, must interpret all over again

 a translator (or compiler) translates the entire speech offline
 the translator takes a copy of the speech, returns when the entire speech is translated
 ADVANTAGE: once translated, it can be read over and over very quickly
 DISADVANTAGE: must wait for the entire speech to be translated

5

Speech Translation

Interpreter:

Translator (compiler):

6

Interpreters

for program translation, the interpretation approach relies on a program
known as an interpreter to translate and execute high-level statements

 the interpreter reads one high-level statement at a time, immediately
translating and executing the statement before processing the next one

 JavaScript is an interpreted language

7

Compilers

the compilation approach relies on a program known as a compiler to
translate the entire high-level language program into its equivalent
machine-language instructions

 the resulting machine-language program can be executed directly on the
computer

 most languages used for the development of commercial software employ the
compilation technique (C, C++)

8

Interpreters and Compilers

tradeoffs between interpretation and compilation

interpreter
 produces results almost immediately
 particularly useful for dynamic, interactive features of web pages
 program executes more slowly (slight delay between the execution of

statements)

compiler
 produces machine-language program that can run directly on the underlying

hardware
 program runs very fast after compilation
 must compile the entire program before execution
 used in large software applications when speed is of the utmost importance

