
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 9
Abstraction and User-Defined Functions

2

Abstraction

abstraction is the process of ignoring minutiae and focusing on the big picture
 in modern life, we are constantly confronted with complexity
 we don't necessarily know how it works, but we know how to use it

e.g., how does a TV work? a car? a computer?

we survive in the face of complexity by abstracting away details
 to use a TV/car/computer, it's not important to understand the inner workings
 we ignore unimportant details and focus on those features relevant to using it

 e.g., TV has power switch, volume control, channel changer, …

JavaScript functions (like Math.sqrt) provide computational abstraction
 a function encapsulates some computation & hides the details from the user
 the user only needs to know how to call the function, not how it works

 Chapter 7 introduced simple user-defined functions
 could encapsulate the statements associated with a button, call the function as needed

3

General Function Form

to write general-purpose functions, we can extend definitions to include:
1) parameters, 2) local variables, and 3) return statements

 parameters are variables that correspond to the function’s inputs (if any)
 parameters appear in the parentheses, separated by commas

 local variables are temporary variables that are limited to that function only
 if require some temporary storage in performing calculations, then declare local variables

using the keyword var, separated by commas
 a local variable exists only while the function executes, so no potential conflicts with

other functions

 a return statement is a statement that specifies an output value
 consists of the keyword return followed by a variable or expression

4

Functions with Inputs

most of the predefined function we have considered expect at least on input
e.g., Math.sqrt takes a number as input, and returns its square root as output

Math.sqrt(9)  3

e.g., Math.max takes two numbers as inputs, and returns the maximum as output
Math.max(7, 3)  7

in English, the word parameter refers to some aspect of a system that can be
varied in order to control its behavior
 in JavaScript, a parameter is a variable (declared inside the function's parentheses)

whose value is automatically initialized to the corresponding input value when the
function is called

 parameters allow the same function to perform different (but related) tasks when
called with different input values

the call ChangeImage("happy.gif") will
assign the input "happy.gif" to the
parameter imgSource, resulting in the
image being assigned to that file
__

the call ChangeImage("sad.gif") will
assign the input "sad.gif" to the
parameter imgSource, resulting in the
image being assigned to that file

5

Newpics Page

in newpics.html, each button performs a similar task - changing the image file
 the single ChangeImage function suffices for each (using different inputs)

6

Newmac Page

similarly, we
could redefine
oldmac.html from
Chapter 5

 OldMacVerse
has 2 inputs:
the animal and
sound for that
verse

this function can
be used to display
any verse, given
the animal and
sound

7

Multiple Inputs

if a function has more than one input,
 parameters in the function definition are separated by commas
 input values in the function call are separated by commas

 values are matched to parameters by order
1st input value in the function call is assigned to the 1st parameter in the function
2nd input value in the function call is assigned to the 2nd parameter in the function
. . .

function OldMacVerse(animal, sound)
// Assumes: animal and sound are strings
// Results: displays corresponding Old MacDonald verse
{
 . . .
}

--

OldMacVerse("cow", "moo");

OldMacVerse("moo", "cow");

8

Parameters and Locals

parameters play an important role in functions
 they facilitate the creation of generalized computations
 i.e., the function defines a formula, but certain values within the formula can

differ each time the function is called

technically, a parameter is a local variable, meaning it exists only inside its
particular function
 when the function is called, memory cells are allocated for the parameters and

each input from the call is assigned to its corresponding parameter
 once a parameter has been assigned a value, you can refer to that parameter

within the function just as you would any other variable
 when the function terminates, the parameters “go away,” and their associated

memory cells are freed

by default, variables other than parameters are considered global, meaning
they exist and can be accessed by JavaScript code anywhere in the page
 note: it is possible to use the same name to refer to a local variable and a global

variable
 within the function, the local variable is accessible
 outside that function, the global variable is accessible

9

Local vs. Global

here, the variable names
animal and sound are
 used for parameters in the

function definition
(local variables)

 used for variables in the
BODY
(global variables)

we can think of these as
completely separate
variables, identifiable via a
subscript
 animalOldMacVerse and

soundOldMacVerse are
used in the function

 animalBODY and

soundBODY are used in
the BODY

10

Declaring Local Variables

we have seen that variables are useful for storing intermediate steps in a
complex computation
 within a user-defined function, the programmer is free to create new variables

and use them in specifying the function’s computation
 however, by default, new variables used in a function are global

 but what if the same variable name is already used elsewhere?

function IncomeTax(income, itemized)
// Assumes: income >= 0, itemized >= 0
// Results: displays flat tax (13%) due after deductions
{
 var deduction, taxableIncome, totalTax;

 deduction = Math.max(itemized, 4150);
 taxableIncome = Math.max(income - deduction, 0);
 totalTax = 0.13*taxableIncome

 alert("You owe $" + totalTax);
}

to avoid name conflicts, the programmer should declare temporary variables to
be local
 a variable declaration is a statement that lists all local variables to be used in a

function (usually the first statement in a function)
 general form: var LOCAL_1, LOCAL_2, . . ., LOCAL_n;

since these variables are
declared as local, they will
not affect (or be affected
by) any variables with the
same names elsewhere in
the page

11

Functions with Return

displaying results using document.write or alert is OK for some functions
 for full generality, we need to be able to return an output value, which can then be

used in other computations

e.g., number = Math.sqrt(9);

amountOwed = IncomeTax(38000, 6500);

function IncomeTax(income, itemized)
// Assumes: income >= 0, itemized >= 0
// Returns: flat tax (13%) due after deductions
{
 var deduction, taxableIncome, totalTax;

 deduction = Math.max(itemized, 4150);
 taxableIncome = Math.max(income - deduction, 0);
 totalTax = 0.13*taxableIncome

 return totalTax;
}

a return statement can be added to a function to specify its output value
 when the return statement is reached, the variable or expression is evaluated and

its value is returned as the function's output
 general form: return OUTPUT_VALUE;

since this function returns the
value, it can be used in other
computations, e.g., calculate
amount owed in 4 payments:

payment =

 IncomeTax(38000, 6500)/4;

12

Newconvert Page

if the same computation must be
done repeatedly, a function can
greatly simplify the page
 here, FahrToCelsius is called

twice to convert two different
temperatures

13

Designing Functions

functions do not add any computational power to the language
 a function definition simply encapsulates other statements

still, the capacity to define and use functions is key to solving complex
problems, as well as to developing reusable code
 encapsulating repetitive tasks can shorten and simplify code
 functions provide units of computational abstraction – user can ignore details
 functions are self-contained, so can easily be reused in different applications

when is it worthwhile to define a function?
 if a particular computation is complex—meaning that it requires extra variables

and/or multiple lines to define
 if you have to perform a particular computation repeatedly within a page

when defining a function, you must identify
 the inputs
 the computation to be performed using those inputs
 the output

14

Design Example

consider the task of designing an online Magic 8-ball (Mattell, Inc.)
 must be able to ask a yes/no type question
 receive an answer (presumably, at random)

could use:

 a text area for entering the
question (which could be
several lines long)

 a text box for displaying the
answer (which should be
short)

 a button for initiating the
action – which involves calling
a function to process the
question, select an answer,
and display it in the text box

15

random.js

general-purpose functions can be grouped together in a library
 a library is a text file that contains one or more function definitions
 once the functions are defined in the library, that library can be loaded into

pages as needed

e.g., the random.js library contains useful functions for generating random
values

to load a library of functions in a page, use a special pair of SCRIPT tags

<script type="text/javascript" src="URL_OR_LOCAL_FILENAME">
</script>

16

Using random.js

in the page below, the random.js library is accessed via the Web
 you can download the file and store it on your own machine
 then, simply specify the file name in the SRC attribute (the default is that the file

is in the same folder as the Web page that includes it)

note: the RandomOneOf function
from random.js would similarly
be useful for the Magic 8-ball
page (in selecting possible
answers at random)

17

Errors to Avoid

When beginning programmers attempt to load a JavaScript code library,
errors of two types commonly occur:

1. if the SCRIPT tags are malformed or the name/address of the library is
incorrect, the library will fail to load
 this will not cause an error in itself, but any subsequent attempt to call a

function from the library will produce

“Error: Object Expected” (using Internet Explorer)
or
“Error: XXX is not a function” (using Firefox), where XXX is the entered name

1. when you use the SRC attribute in a pair of SCRIPT tags to load a code
library, you cannot place additional JavaScript code between the tags
 think of the SRC attribute as causing the contents of the library to be inserted

between the tags, overwriting any other code that was erroneously placed there

<script type="text/javascript" src="FILENAME">
 ANYTHING PLACED IN HERE WILL BE IGNORED
</script>

 if you want additional JavaScript code or another library, you must use another
pair of SCRIPT tags

