
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 11
Conditional Execution

2

Conditional Execution

so far, all of the code you have written has been unconditionally executed
 the browser carried out statements in the same set order

in contrast, many programming tasks require code that reacts differently
under varying circumstances or conditions
 e.g., a student's course grade depends upon his/her average
 e.g., an ESP test requires recognizing when a subject guessed right
 e.g., the outcome of a game depends upon die rolls or player moves

conditional execution refers to a program’s ability to execute a statement or
sequence of statements only if some condition holds true

3

If Statements

in JavaScript, the simplest form of conditional statement is the if statement
 one action is taken if some condition is true, but a different action is taken if the

condition is not true (called the else case)
 the else case is optional

general form of the if statement:

4

Braces in If Statements

some people prefer braces on separate lines formatted like this:

if (BOOLEAN_TEST)
{
 STATEMENTS_EXECUTED_IF_TRUE
}
else
{
 STATEMENTS_EXECUTED_IF_FALSE
}

either style is acceptable, but be consistent!
 properly aligning the code (with if-else lining up and statements indented) is

central in producing code that is easy to read and modify

technically, you can omit the braces if there is only one statement
 however, THIS IS STRONGLY DISCOURAGED!
 can lead to tricky errors if the code is ever modified

5

Boolean Tests

the test that controls an if statement can be any boolean expression (i.e., an
expression that evaluates to either true or false)
 boolean tests are formed using relational operators because they test the

relationships between values

the boolean test in an if statement determines the code that will be executed
 if the test is true, then the code inside the subsequent curly braces will

execute
 if the test is false, then the code inside the curly braces following the else will

execute
 note that if the test is false and there is no else case, the program moves on

to the statement directly after the if

NOTE:

== is for comparisons

= is for assignments

6

If Statement Examples

an if statement is known as a control statement, since its purpose is to
control the execution of other statements

7

Example within a Page

8

Accessing Text Fields

recall that values entered via text boxes/areas are always returned as strings

if (document.getElementById('age').value >= 18) {
 alert("You are old enough to vote.");
}
else {
 alert("Sorry. You are too young to vote.");
}

will say that a 2-year old can
vote, but a 102-year old can't!

WHY?

age = parseFloat(document.getElementById('age').value);
if (age >= 18) {
 alert("You are old enough to vote.");
}
else {
 alert("Sorry. You are too young to vote.");
}

will behave as expected

if you wish to treat a value obtained from a text box or text area as a number,
you must use the parseFloat function to convert it

9

Nested If Statements

programming tasks often require code that responds to more than one
condition
 this can be accomplished by nesting one if statement inside of another

example: determining wind-chill
 wind-chill is only defined for temperatures less than or equal to 50 degrees
 the initial if test is to determine if it is a valid temperature to calculate wind-

chill
 the nested if statement only executes if the outer test is true

10

Cascading If-else Statements

nested if-else structures are known as cascading if-else statements because
control cascades down the branches
 the topmost level is evaluated first
 if the test succeeds, then the corresponding statements are executed and control

moves to the next statement following the cascading if
 if the test fails, then control cascades down to the next if test
 in general, control cascades down the statement from one test to another until

one succeeds or the end of the statement is reached

example: nested if-else structure

11

A Cleaner Notation

when it is necessary to handle a large number of alternatives, nested if-else
statements can become cumbersome and unwieldy
 multiple levels of indentation and curly braces cause the code to look cluttered

make it harder to read/understand

example: nested if statements vs. a more readable else-if

12

Die Roll Example

consider a Web page that simulates the roll of a single die
 will use an image to display the die
 will use a button to initiate the die roll

 when the user clicks the button, a random die roll is selected and the
corresponding image is displayed

13

Die Roll Page

the RandomInt function from
random.js is used to select the
random roll

depending on the roll value, the
correct image is displayed

since more than two possibilities, a
cascading if-else is needed

14

Generalizing Code

note that each case in the cascading if-else follows the same pattern

if (roll == 1) {
 document.getElementById('die').src = "http://dave-reed.com/book/Images/die1.gif";
}
else if (roll == 2) {
 document.getElementById('die').src = "http://dave-reed.com/book/Images/die2.gif";
}
else if (roll == 3) {
 document.getElementById('die').src = "http://dave-reed.com/book/Images/die3.gif";
}
else if (roll == 4) {
 document.getElementById('die').src = "http://dave-reed.com/book/Images/die4.gif";
}
else if (roll == 5) {
 document.getElementById('die').src = "http://dave-reed.com/book/Images/die5.gif";
}
else {
 document.getElementById('die').src = "http://dave-reed.com/book/Images/die6.gif";
}

this entire cascading if-else structure could be replaced by the following:

document.getElementById('die').src =
 "http://dave-reed.com/book/Images/die" + roll + ".gif";

15

Counters

in software applications, if statements are often used to count occurrences of
conditional or user-initiated events
 e.g., count the number of times dice rolls come up doubles
 e.g., count the number of times the user guesses a number correctly

any variable that is used to record occurrences of an event is known as a
counter
 initially, the counter is set to zero
 each time the specified action occurs, the counter is incremented
 after a given time period, the value stored in the counter will tell you the number

of times the desired event took place

16

Logical Connectives

sometimes, simple comparisons between two values may not be adequate to
express the conditions under which code should execute

JavaScript provides operators for expressing multipart tests
 logical AND (&&): represents the conjunction of two things

 (TEST1 && TEST2) is true if both TEST1 and TEST2 are true

if (roll1 == 4 && roll2 == 4) {
 // code to be executed when double fours are rolled
}

 logical OR (||): represents the disjunction of two things
 (TEST1 || TEST2) is true if either TEST1 or TEST2 are true

if (roll1 == 4 || roll2 == 4) {
 // code to be executed when at least one four is rolled
}

 logical NOT (!): represents negation
 (!TEST1) is true only if TEST1 is false

if (!(roll1 == 4 || roll2 == 4)) {
 // code to be executed when neither roll is a four
}

