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Chapter 11
Conditional Execution
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Conditional Execution

so far, all of the code you have written has been unconditionally executed
 the browser carried out statements in the same set order

in contrast, many programming tasks require code that reacts differently 
under varying circumstances or conditions
 e.g., a student's course grade depends upon his/her average
 e.g., an ESP test requires recognizing when a subject guessed right
 e.g., the outcome of a game depends upon die rolls or player moves

conditional execution refers to a program’s ability to execute a statement or 
sequence of statements only if some condition holds true
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If Statements

in JavaScript, the simplest form of conditional statement is the if statement
 one action is taken if some condition is true, but a different action is taken if the 

condition is not true (called the else case)
 the else case is optional

general form of the if statement:
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Braces in If Statements

some people prefer braces on separate lines formatted like this:

if (BOOLEAN_TEST)
{
    STATEMENTS_EXECUTED_IF_TRUE
}
else
{
    STATEMENTS_EXECUTED_IF_FALSE
}

either style is acceptable, but be consistent!
 properly aligning the code (with if-else lining up and statements indented) is 

central in producing code that is easy to read and modify

technically, you can omit the braces if there is only one statement 
 however, THIS IS STRONGLY DISCOURAGED!
 can lead to tricky errors if the code is ever modified
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Boolean Tests

the test that controls an if statement can be any boolean expression (i.e., an 
expression that evaluates to either true or false)
 boolean tests are formed using relational operators because they test the 

relationships between values

the boolean test in an if statement determines the code that will be executed 
 if the test is true, then the code inside the subsequent curly braces will 

execute
 if the test is false, then the code inside the curly braces following the else will 

execute
 note that if the test is false and there is no else case, the program moves on 

to the statement directly after the if

NOTE: 

== is for comparisons 

= is for assignments
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If Statement Examples

an if statement is known as a control statement, since its purpose is to 
control the execution of other statements 
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Example within a Page
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Accessing Text Fields

recall that values entered via text boxes/areas are always returned as strings

if (document.getElementById('age').value >= 18) {
    alert("You are old enough to vote.");
}
else {
    alert("Sorry. You are too young to vote.");
}

will say that a 2-year old can 
vote, but a 102-year old can't! 

WHY?

age = parseFloat(document.getElementById('age').value);
if (age >= 18) {
    alert("You are old enough to vote.");
}
else {
    alert("Sorry. You are too young to vote.");
}

will behave as expected

if you wish to treat a value obtained from a text box or text area as a number, 
you must use the parseFloat function to convert it
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Nested If Statements

programming tasks often require code that responds to more than one 
condition
 this can be accomplished by nesting one if statement inside of another

example: determining wind-chill
 wind-chill is only defined for temperatures less than or equal to 50 degrees
 the initial if test is to determine if it is a valid temperature to calculate wind-

chill
 the nested if statement only executes if the outer test is true
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Cascading If-else Statements

nested if-else structures are known as cascading if-else statements because 
control cascades down the branches
 the topmost level is evaluated first 
 if the test succeeds, then the corresponding statements are executed and control 

moves to the next statement following the cascading if
 if the test fails, then control cascades down to the next if test
 in general, control cascades down the statement from one test to another until 

one succeeds or the end of the statement is reached

example: nested if-else structure
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A Cleaner Notation

when it is necessary to handle a large number of alternatives, nested if-else 
statements can become cumbersome and unwieldy
 multiple levels of indentation and curly braces cause the code to look cluttered 

make it harder to read/understand

example:          nested if statements       vs.   a more readable else-if
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Die Roll Example

consider a Web page that simulates the roll of a single die
 will use an image to display the die
 will use a button to initiate the die roll

 when the user clicks the button, a random die roll is selected and the 
corresponding image is displayed
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Die Roll Page

the RandomInt function from 
random.js is used to select the 
random roll

depending on the roll value, the 
correct image is displayed

since more than two possibilities, a 
cascading if-else is needed
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Generalizing Code

note that each case in the cascading if-else follows the same pattern

if (roll == 1) {
  document.getElementById('die').src = "http://dave-reed.com/book/Images/die1.gif";
}
else if (roll == 2) {
  document.getElementById('die').src = "http://dave-reed.com/book/Images/die2.gif";
}
else if (roll == 3) {
  document.getElementById('die').src = "http://dave-reed.com/book/Images/die3.gif";
}
else if (roll == 4) {
  document.getElementById('die').src = "http://dave-reed.com/book/Images/die4.gif";
}
else if (roll == 5) {
  document.getElementById('die').src = "http://dave-reed.com/book/Images/die5.gif";
}
else {
  document.getElementById('die').src = "http://dave-reed.com/book/Images/die6.gif";
}

this entire cascading if-else structure could be replaced by the following:

document.getElementById('die').src = 
                         "http://dave-reed.com/book/Images/die" + roll + ".gif";
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Counters

in software applications, if statements are often used to count occurrences of 
conditional or user-initiated events
 e.g., count the number of times dice rolls come up doubles
 e.g., count the number of times the user guesses a number correctly

any variable that is used to record occurrences of an event is known as a 
counter
 initially, the counter is set to zero 
 each time the specified action occurs, the counter is incremented 
 after a given time period, the value stored in the counter will tell you the number 

of times the desired event took place
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Logical Connectives

sometimes, simple comparisons between two values may not be adequate to 
express the conditions under which code should execute

JavaScript provides operators for expressing multipart tests
 logical AND (&&): represents the conjunction of two things

 (TEST1 && TEST2) is true if both TEST1 and TEST2 are true

if (roll1 == 4 && roll2 == 4) {
    // code to be executed when double fours are rolled
}

 logical OR (||): represents the disjunction of two things
 (TEST1 || TEST2) is true if either TEST1 or TEST2 are true

if (roll1 == 4 || roll2 == 4) {
    // code to be executed when at least one four is rolled
}

 logical NOT (!): represents negation
 (!TEST1) is true only if TEST1 is false

if (!(roll1 == 4 || roll2 == 4)) {
    // code to be executed when neither roll is a four
}


