
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 13
Conditional Repetition

2

Conditional Repetition

an if statement is known as a control statement
 it is used to control the execution of other JavaScript statements

 provides for conditional execution
 is useful for solving problems that involve choices

 either do this or don't, based on some condition (if)
 either do this or do that, based on some condition (if-else)

closely related to the concept of conditional execution is conditional repetition
 many problems involve repeating some task over and over until a specific

condition is met

 e.g., rolling dice until a 7 is obtained
 e.g., repeatedly prompting the user for a valid input

 in JavaScript, while loops provide for conditional repetition

3

While Loops

when the browser encounters a while loop, it first evaluates the boolean test
 if the test succeeds, then the statements inside the loop are executed in order,

just like an if statement
 once all the statements have been executed, program control returns to the

beginning of the loop
 the loop test is evaluated again, and if it succeeds, the loop body statements are

executed again
 this process repeats until the boolean test fails

a while loop resembles an if statement in that its behavior is dependent on a
boolean condition.
 however, the statements inside a while loop’s curly braces (a.k.a. the loop body)

are executed repeatedly as long as the condition remains true
 general form:

4

While Loop Example

example: roll two dice repeatedly until doubles are obtained

sample output:

note: even though while loops and if
statements look similar, they are very
different control statements
 an if statement may execute its code 1

time or not at all
 a while loop may execute its code an

arbitrary number of times (including not
at all)

5

While
Loop Page

6

Avoiding redundancy

note the redundancy in the code
 must perform the initial dice roll before the loop begins
 then, have to repeatedly re-roll inside the loop

can avoid this by either:
 "priming the loop" with default values that allow the loop to execute
 defining a Boolean "flag" to determine when the loop should continue

7

Loop Tests

note: the loop test defines the condition under which the loop continues
 this is often backwards from the way we think about loops

 e.g., read input until you get a positive number (i.e., until input > 0)

while (input <= 0) { . . . }

 e.g., keep rolling dice until you get doubles (i.e., until roll1 == roll2)

while (roll1 != roll2) { . . . }

 e.g., keep rolling dice until you get double fours (i.e., until roll1 == 4 && roll2 = 4)

while (roll1 != 4 || roll2 != 4) { . . . }

DeMorgan's Law: !(X && Y) == (!X || !Y)

!(X || Y) == (!X && !Y)

8

Counter-Driven Loops

since a while loop is controlled by a condition, it is usually impossible to
predict the number of repetitions that will occur
 e.g., how many dice rolls will it take to get doubles?

a while loop can also be used to repeat a task some fixed number of times
 implemented by using a while loop whose test is based on a counter
 general form of counter-driven while loop:

 the counter is initially set to 0 before the loop begins, and is incremented at the
end of the loop body

 the counter keeps track of how many times the statements in the loop body have
executed

 when the number of repetitions reaches the desired number, the loop test fails and the
loop terminates

9

Counter-Driven Loops

examples:

10

Counter-Driven
Loops Page

11

Infinite Loops

the browser will repeatedly execute statements in the body of a while loop
as long as the loop test succeeds (evaluates to true)

 it is possible that the test will always succeed and the loop will run forever

 a loop that runs forever is known as an infinite loop (or a black hole loop)

 to guard against infinite loops, make sure that some part of the loop test
changes inside the loop

 in the above example, repCount is not updated in the loop so there is no
chance of terminating once the loop starts

 an infinite loop may freeze up the browser
 sometimes, clicking the Stop button will suffice to interrupt the browser
 other times, you may need to restart the browser

12

Variables and Repetition

any variable can be employed to control the number of loop repetitions and
the variable can be updated in various ways

example: countdown

13

Countdown
Page

14

Example: Hailstone Sequences

an interesting unsolved problem in mathematics: hailstone sequence

1. start with any positive integer
2. if the number is odd, then multiply the number by three and add one;

otherwise, divide it by two
3. repeat as many times as desired

 for example: 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

it is conjectured that, no matter what positive integer you start with, you will
always end up in the 4-2-1 loop
 this has been verified for all starting number up to 1,200,000,000,000
 but, it still has not been proven to hold for ALL starting numbers

 we can define a JavaScript function for experimenting with this problem
 the hailstone function will generate the sequence given a starting number

1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 15
JavaScript Strings

2

Strings as Objects

so far, your interactive Web pages have manipulated strings in simple ways
 use prompt or a text box/area to input a word or phrase
 store that text in a (string) variable
 incorporate the text in a message, possibly using + to concatenate

strings are different from numbers and Booleans in that they are objects
 a software object is a unit of code that encapsulates both data and operations

that can be performed on that data

 a string is a software object that models words and phrases

data: a sequence of characters, enclosed in quotes
operations include: make upper case, make lower case,

determine the number of characters,
access a particular character,
search for a particular character, …

3

Object-Oriented Programming

objects are fundamental in the dominant approach to developing software
systems: object-oriented programming (OOP)
 OOP encourages programmers to design programs around software objects

 the programmer identifies the real-world objects involved in a system
(e.g., for a banking program: bank account, customer, teller, …)

 then designs and builds software objects to model these real-world objects

 OOP is effective for managing large systems, since individual objects can be
assigned to different teams and developed independently

 OOP also supports code reuse, since the same or similar objects can be
combined in different ways to solve different kinds of problems

example: a doorbell button
 has physical components/properties: color, shape, label, …
 has functionality: when you press the button, the bell rings

an HTML button is a software object that models a real-world button
 has physical components/properties: color, shape, label, …
 has functionality: when you click on the button, JavaScript code is executed

4

Properties and Methods

using object-oriented terminology,
 the characteristics of an object are called properties

 e.g., a string object has a length property that identifies the number of
characters in the string

 the operations that can be performed on the string are called methods
 e.g., the toLowerCase method makes a copy of the string with all upper-

case letters converted to lower-case

properties and methods are not new concepts
 a property is a special kind of a variable (it stores a value)
 a method is a special kind of function (it performs some action)

what is special is that they are associated with (or "belong to") an object
 e.g., each string object will have its own variable to stores it length

to access an object property, specify: object name, a period, property name

str1 = "foo"; str2 = "Hi there";

len1 = str1.length; len2 = str2.length;

5

Properties and Methods

similarly, to call a method: object name, period, method call
 e.g., str.toLowerCase() calls the toLowerCase method on str

(which returns a lowercase copy of the string)
 e.g., str.toUpperCase() calls the toUpperCase method on str

(which returns an uppercase copy of the string)

note: the toLowerCase and toUpperCase methods do not change the string
object they are called on (only an assignment can do that!)
 instead, they return modified copies of the string

6

String Manipulation Page

7

Common String Methods

useful methods exist that allow programmers to access and manipulate
individual components of a string
 components are identifiable via indices, or numbers that correspond to the order

in which individual characters occur in a string
 indices are assigned in ascending order from left to right, so that the first

character in the string is at index 0

the charAt method provides access to a single character within the string
 it takes an index as an input and returns the character at that particular index

word = "foo";
ch = word.charAt(0); // ASSIGNS ch = "f"

the substring method provides access to an entire sequence of characters
within the string
 it takes two numbers as inputs, representing the starting (inclusive) and ending

(exclusive) indices of the substring, and returns the substring

word = "foo";
sub = word.substring(1, 3); // ASSIGNS sub = "oo"

8

String Access/Concatenation

recall: the concatenation operator (+) can join strings together

assuming the variable word stores a string value, what affect would the
following assignment have?

word = word.charAt(0) + word.substring(1, word.length);

the following function takes a string as input and uses string method calls to
create (and return) a capitalized version of that string

9

Searching Strings

the search method traverses a string in order to locate a given character or
substring
 it takes a character or string as input and returns the index at which the

character or string first occurs (or -1 if not found)

str = "banana";

num1 = str.search("n"); // ASSIGNS num1 = 2 since the character

// "n" first occurs at index 2

num2 = str.search("ana"); // ASSIGNS num2 = 1 since the string

// "ana" first occurs at index 1

num3 = str.search("z"); // ASSIGNS num3 = -1 since the character

// "z" does not occur anywhere

simple application: determine whether a string is a single word or a phrase
 if the string contains no spaces, the call str.search(" ") will return -1,

indicating that the string value consists of a single word
 if str.search(" ") returns a nonnegative value, then the presence of spaces

signifies a phrase containing multiple words

10

General Searches

there are times when you want to search for a type of character, rather than a
specific value

example: converting a word into Pig Latin
 if a word contains no vowels or begins with a vowel, the characters “way” are

appended to the end of the word

nth  nthway apple  appleway

 if a word begins with a consonant, its initial sequence of consonants is shifted to
the end of the word followed by “ay”

banana  ananabay cherry  errychay

in order to distinguish between these two cases, must search for the first vowel
 then, use the substring method to break the string into parts and the +

operator to put the pieces back together (with "ay")

cherry  erry + ch + ay = errychay

11

General Searches

rather than having to search for vowels individually, an entire class of
characters can be specified using /[. . .]/

12

Strings and Repetition

some tasks involve repeatedly performing the same operations
 to accomplish such tasks, we can combine while loops with string methods such

as charAt and search

example: a while loop used to access and process each character in a string
 the characters that comprise the string are concatenated one-by-one onto

another string, resulting in an exact copy

