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Chapter 13
Conditional Repetition



2

Conditional Repetition

an if statement is known as a control statement
 it is used to control the execution of other JavaScript statements

 provides for conditional execution
 is useful for solving problems that involve choices

 either do this or don't, based on some condition (if)
 either do this or do that, based on some condition (if-else)

closely related to the concept of conditional execution is conditional repetition
 many problems involve repeating some task over and over until a specific 

condition is met

 e.g., rolling dice until a 7 is obtained
 e.g., repeatedly prompting the user for a valid input

 in JavaScript, while loops provide for conditional repetition
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While Loops

when the browser encounters a while loop, it first evaluates the boolean test
 if the test succeeds, then the statements inside the loop are executed in order, 

just like an if statement
 once all the statements have been executed, program control returns to the 

beginning of the loop
 the loop test is evaluated again, and if it succeeds, the loop body statements are 

executed again
 this process repeats until the boolean test fails

a while loop resembles an if statement in that its behavior is dependent on a 
boolean condition.  
 however, the statements inside a while loop’s curly braces (a.k.a. the loop body) 

are executed repeatedly as long as the condition remains true
 general form:
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While Loop Example

example: roll two dice repeatedly until doubles are obtained

sample output:

note: even though while loops and if 
statements look similar, they are very 
different control statements
 an if statement may execute its code 1 

time or not at all
 a while loop may execute its code an 

arbitrary number of times (including not 
at all)
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While 
Loop Page
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Avoiding redundancy

note the redundancy in the code
 must perform the initial dice roll before the loop begins
 then, have to repeatedly re-roll inside the loop

can avoid this by either:
 "priming the loop" with default values that allow the loop to execute
 defining a Boolean "flag" to determine when the loop should continue
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Loop Tests

note: the loop test defines the condition under which the loop continues
 this is often backwards from the way we think about loops

 e.g., read input until you get a positive number (i.e., until input > 0)

while (input <= 0) { . . . }

 e.g., keep rolling dice until you get doubles (i.e., until roll1 == roll2)

while (roll1 != roll2) { . . . }

 e.g., keep rolling dice until you get double fours (i.e., until roll1 == 4 && roll2 = 4)

while (roll1 != 4 || roll2 != 4) { . . . }

DeMorgan's Law: !(X && Y) == (!X || !Y)

!(X || Y) == (!X && !Y)
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Counter-Driven Loops

since a while loop is controlled by a condition, it is usually impossible to 
predict the number of repetitions that will occur
 e.g., how many dice rolls will it take to get doubles?

a while loop can also be used to repeat a task some fixed number of times
 implemented by using a while loop whose test is based on a counter
 general form of counter-driven while loop:

 the counter is initially set to 0 before the loop begins, and is incremented at the 
end of the loop body

 the counter keeps track of how many times the statements in the loop body have 
executed

 when the number of repetitions reaches the desired number, the loop test fails and the 
loop terminates
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Counter-Driven Loops

examples: 
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Counter-Driven 
Loops Page
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Infinite Loops

the browser will repeatedly execute statements in the body of a while loop
as long as the loop test succeeds (evaluates to true)

 it is possible that the test will always succeed and the loop will run forever

 a loop that runs forever is known as an infinite loop (or a black hole loop)

 to guard against infinite loops, make sure that some part of the loop test 
changes inside the loop 

 in the above example, repCount is not updated in the loop so there is no 
chance of terminating once the loop starts

 an infinite loop may freeze up the browser
 sometimes, clicking the Stop button will suffice to interrupt the browser
 other times, you may need to restart the browser
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Variables and Repetition

any variable can be employed to control the number of loop repetitions and 
the variable can be updated in various ways

example: countdown
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Countdown 
Page
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Example: Hailstone Sequences

an interesting unsolved problem in mathematics: hailstone sequence

1. start with any positive integer
2. if the number is odd, then multiply the number by three and add one; 

otherwise, divide it by two
3. repeat as many times as desired

 for example:  5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

it is conjectured that, no matter what positive integer you start with, you will 
always end up in the 4-2-1 loop
 this has been verified for all starting number up to 1,200,000,000,000
 but, it still has not been proven to hold for ALL starting numbers

 we can define a JavaScript function for experimenting with this problem
 the hailstone function will generate the sequence given a starting number 
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Chapter 15
JavaScript Strings
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Strings as Objects

so far, your interactive Web pages have manipulated strings in simple ways
 use prompt or a text box/area to input a word or phrase
 store that text in a (string) variable
 incorporate the text in a message, possibly using + to concatenate

strings are different from numbers and Booleans in that they are objects
 a software object is a unit of code that encapsulates both data and operations 

that can be performed on that data

 a string is a software object that models words and phrases

data: a sequence of characters, enclosed in quotes
operations include: make upper case, make lower case, 

determine the number of characters, 
access a particular character, 
search for a particular character, …
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Object-Oriented Programming

objects are fundamental in the dominant approach to developing software 
systems: object-oriented programming (OOP) 
 OOP encourages programmers to design programs around software objects

 the programmer identifies the real-world objects involved in a system 
(e.g., for a banking program: bank account, customer, teller, …)

 then designs and builds software objects to model these real-world objects

 OOP is effective for managing large systems, since individual objects can be 
assigned to different teams and developed independently 

 OOP also supports code reuse, since the same or similar objects can be 
combined in different ways to solve different kinds of problems

example: a doorbell button
 has physical components/properties: color, shape, label, …
 has functionality: when you press the button, the bell rings

an HTML button is a software object that models a real-world button
 has physical components/properties: color, shape, label, …
 has functionality: when you click on the button, JavaScript code is executed
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Properties and Methods

using object-oriented terminology,
 the characteristics of an object are called properties 

 e.g., a string object has a length property that identifies the number of 
characters in the string

 the operations that can be performed on the string are called methods
 e.g., the toLowerCase method makes a copy of the string with all upper-

case letters converted to lower-case

properties and methods are not new concepts
 a property is a special kind of a variable (it stores a value)
 a method is a special kind of function (it performs some action)

what is special is that they are associated with (or "belong to") an object
 e.g., each string object will have its own variable to stores it length

to access an object property, specify: object name, a period, property name

str1 = "foo"; str2 = "Hi there";

len1 = str1.length; len2 = str2.length;
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Properties and Methods

similarly, to call a method: object name, period, method call
 e.g., str.toLowerCase() calls the toLowerCase method on str 

(which returns a lowercase copy of the string)
 e.g., str.toUpperCase() calls the toUpperCase method on str 

(which returns an uppercase copy of the string)

note: the toLowerCase and toUpperCase methods do not change the string 
object they are called on (only an assignment can do that!)
 instead, they return modified copies of the string
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String Manipulation Page
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Common String Methods

useful methods exist that allow programmers to access and manipulate 
individual components of a string
 components are identifiable via indices, or numbers that correspond to the order 

in which individual characters occur in a string
 indices are assigned in ascending order from left to right, so that the first 

character in the string is at index 0

the charAt method provides access to a single character within the string
 it takes an index as an input and returns the character at that particular index

word = "foo";
ch = word.charAt(0); // ASSIGNS ch = "f"

the substring method provides access to an entire sequence of characters 
within the string
 it takes two numbers as inputs, representing the starting (inclusive) and ending 

(exclusive) indices of the substring, and returns the substring

word = "foo";
sub = word.substring(1, 3); // ASSIGNS sub = "oo"
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String Access/Concatenation

recall: the concatenation operator (+) can join strings together

assuming the variable word stores a string value, what affect would the 
following assignment have?

word = word.charAt(0) + word.substring(1, word.length);

the following function takes a string as input and uses string method calls to 
create (and return) a capitalized version of that string
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Searching Strings

the search method traverses a string in order to locate a given character or 
substring
 it takes a character or string as input and returns the index at which the 

character or string first occurs (or -1 if not found)

str = "banana";

num1 = str.search("n"); // ASSIGNS num1 = 2 since the character

//   "n" first occurs at index 2 

num2 = str.search("ana"); // ASSIGNS num2 = 1 since the string

//   "ana" first occurs at index 1 

num3 = str.search("z"); // ASSIGNS num3 = -1 since the character

//   "z" does not occur anywhere

simple application: determine whether a string is a single word or a phrase
 if the string contains no spaces, the call str.search(" ") will return -1, 

indicating that the string value consists of a single word
 if str.search(" ") returns a nonnegative value, then the presence of spaces 

signifies a phrase containing multiple words
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General Searches

there are times when you want to search for a type of character, rather than a 
specific value

example: converting a word into Pig Latin
 if a word contains no vowels or begins with a vowel, the characters “way” are 

appended to the end of the word

nth  nthway apple  appleway

 if a word begins with a consonant, its initial sequence of consonants is shifted to 
the end of the word followed by “ay”

banana  ananabay cherry  errychay

in order to distinguish between these two cases, must search for the first vowel
 then, use the substring method to break the string into parts and the + 

operator to put the pieces back together (with "ay")

cherry  erry + ch + ay = errychay
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General Searches

rather than having to search for vowels individually, an entire class of 
characters can be specified using /[ . . . ]/
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Strings and Repetition

some tasks involve repeatedly performing the same operations
 to accomplish such tasks, we can combine while loops with string methods such 

as charAt and search

example: a while loop used to access and process each character in a string
 the characters that comprise the string are concatenated one-by-one onto 

another string, resulting in an exact copy


