
1

A Balanced Introduction to A Balanced Introduction to
Computer Science, 2/EComputer Science, 2/E
David Reed, Creighton UniversityDavid Reed, Creighton University

©2008 Pearson Prentice Hall©2008 Pearson Prentice Hall
ISBN 978-0-13-601722-6ISBN 978-0-13-601722-6

Chapter 8
Algorithms and Programming Languages

2

Algorithms

the central concept underlying all computation is that of the algorithm
 an algorithm is a step-by-step sequence of instructions for carrying out some task

programming can be viewed as the process of designing and implementing
algorithms that a computer can carry out
 a programmer’s job is to:

 create an algorithm for accomplishing a given objective, then
 translate the individual steps of the algorithm into a programming language

that the computer can understand

example: programming in JavaScript
 we have written programs that instruct the browser to carry out a particular task
 given the proper instructions, the browser is able to understand and produce the

desired results

3

Algorithms in the Real World

the use of algorithms is not limited to the domain of
computing
 e.g., recipes for baking cookies
 e.g., directions to your house

there are many unfamiliar tasks in life that we could
not complete without the aid of instructions

 in order for an algorithm to be effective, it must be
stated in a manner that its intended executor can
understand

 a recipe written for a master chef will look different than
a recipe written for a college student

 as you have already experienced, computers are
more demanding with regard to algorithm specifics
than any human could be

4

Designing & Analyzing Algorithms

4 steps to solving problems (George Polya)
1. understand the problem
2. devise a plan
3. carry out your plan
4. examine the solution

EXAMPLE: finding the oldest person in a room full of people
1. understanding the problem

 initial condition – room full of people
 goal – identify the oldest person
 assumptions

 a person will give their real birthday
 if two people are born on the same day, they are the same age
 if there is more than one oldest person, finding any one of them is okay

1. we will consider 2 different designs for solving this problem

5

Algorithm 1

Finding the oldest person (algorithm 1)
1. line up all the people along one wall
2. ask the first person to state his or her name and birthday, then write this

information down on a piece of paper
3. for each successive person in line:

i. ask the person for his or her name and birthday
ii. if the stated birthday is earlier than the birthday on the paper, cross out old

information and write down the name and birthday of this person

when you reach the end of the line, the name and birthday of the oldest person will
be written on the paper

6

Algorithm 2

Finding the oldest person (algorithm 2)
1. line up all the people along one wall
2. as long as there is more than one person in the line, repeatedly

i. have the people pair up (1st with 2nd, 3rd with 4th, etc) – if there is an odd
number of people, the last person will be without a partner

ii. ask each pair of people to compare their birthdays
iii. request that the younger of the two leave the line

when there is only one person left in line, that person is the oldest

7

Algorithm Analysis

determining which algorithm is "better" is not always clear cut
 it depends upon what features are most important to you

 if you want to be sure it works, choose the clearer algorithm
 if you care about the time or effort required, need to analyze performance

algorithm 1 involves asking each person’s birthday and then comparing it to the
birthday written on the page
 the amount of time to find the oldest person is proportional to the number of

people
 if you double the amount of people, the time needed to find the oldest person will

also double

algorithm 2 allows you to perform multiple comparisons simultaneously
 the time needed to find the oldest person is proportional to the number of rounds it

takes to shrink the line down to one person
 which turns out to be the logarithm (base 2) of the number of people

 if you double the amount of people, the time needed to find the oldest person
increases by the cost of one more comparison

the words algorithm and logarithm are similar – do not be confused by this
algorithm: a step-by-step sequence of instructions for carrying out a task
logarithm: the exponent to which a base is raised to produce a number

e.g., 210 = 1024, so log2(1024) = 10

8

Algorithm Analysis (cont.)

when the problem size is large, performance differences
can be dramatic

for example, assume it takes 5 seconds to compare birthdays

 for algorithm 1:
 100 people 5*100 = 500 seconds
 200 people 5*200 = 1000 seconds
 400 people 5*400 = 2000 seconds

. . .
 1,000,000 people 5*1,000,000 = 5,000,000 seconds

 for algorithm 2:
 100 people 5* log2 100 = 35 seconds
 200 people 5* log2 200 = 40 seconds
 400 people 5* log2 400 = 45 seconds

. . .
 1,000,000 people 5* log2 1,000,000 = 100 seconds

9

Big-Oh Notation

to represent an algorithm’s performance in relation to the size of the
 problem, computer scientists use what is known as Big-Oh notation

 executing an O(N) algorithm requires time proportional to the size of problem
 given an O(N) algorithm, doubling the problem size doubles the work

 executing an O(log N) algorithm requires time proportional to the logarithm of
the problem size
 given an O(log N) algorithm, doubling the problem size adds a constant

amount of work

based on our previous analysis:
 algorithm 1 is classified as O(N)

 algorithm 2 is O(log N)

10

Another Algorithm Example

SEARCHING: a common problem in computer science involves storing and
 maintaining large amounts of data, and then searching the data for
 particular values

 data storage and retrieval are key to many industry applications
 search algorithms are necessary to storing and retrieving data efficiently

 e.g., consider searching a large payroll database for a particular record
 if the computer selected entries at random, there is no assurance that the

particular record will be found
 even if the record is found, it is likely to take a large amount of time
 a systematic approach assures that a given record will be found, and that it

will be found more efficiently

there are two commonly used algorithms for searching a list of items
 sequential search – general purpose, but relatively slow
 binary search – restricted use, but fast

11

Sequential Search

sequential search is an algorithm that involves examining each list item in
sequential order until the desired item is found

sequential search for finding an item in a list
1. start at the beginning of the list
2. for each item in the list

i. examine the item - if that item is the one you are seeking, then you are
done

ii. if it is not the item you are seeking, then go on to the next item in the list

if you reach the end of the list and have not found the item, then it was not in the list

sequential search guarantees that you will find the item if it is in the list
 but it is not very practical for very large databases
 worst case: you may have to look at every entry in the list

12

Binary Search

binary search involves continually cutting the desired search list in half until
the item is found
 the algorithm is only applicable if the list is ordered

 e.g., a list of numbers in increasing order
 e.g., a list of words in alphabetical order

binary search for finding an item in an ordered list
1. initially, the potential range in which the item could occur is the entire list
2. as long as items remain in the potential range and the desired item has not

been found, repeatedly
i. examine at the middle entry in the potential range
ii. if the middle entry is the item you are looking for, then you are done
iii. if the middle entry is greater than the desired item, then reduce the

potential range to those entries left of the middle
iv. if the middle entry is less than the desired item, then reduce the potential

range to those entries right of the middle

by repeatedly cutting the potential range in half, binary search can hone in on
the value very quickly

13

Binary Search Example
suppose you have a sorted list of state names, and want to find Illinois

1. start by examining the middle entry (Missouri)
since Missouri comes after Illinois alphabetically, can eliminate it and all entries that appear

to the right

1. next, examine the middle of the remaining entries (Florida)
since Florida comes before Illinois alphabetically, can eliminate it and all entries that appear

to the left
1. next, examine the middle of the remaining entries (Illinois)

the desired entry is found

14

Search Analysis

sequential search
 in the worst case, the item you are looking for is in the last spot in the list (or

not in the list at all)
 as a result, you will have to inspect and compare every entry in the list

 the amount of work required is proportional to the list size
 sequential search is an O(N) algorithm

binary search
 in the worst case, you will have to keep halving the list until it gets down to a

single entry
 each time you inspect/compare an entry, you rule out roughly half the remaining entries

 the amount of work required is proportional to the logarithm of the list size
 binary search is an O(log N) algorithm

imagine searching a phone book of the United States (300 million people)
 sequential search requires at most 300 million inspections/comparisons
 binary search requires at most log2(300,000,000) = 29

inspections/comparisons

15

Another Algorithm Example

Newton’s Algorithm for finding the square root of N
1. start with an initial approximation of 1
2. as long as the approximation isn’t close enough, repeatedly

i. refine the approximation using the formula:
newApproximation = (oldApproximation + N/oldApproximation)/2

example: finding the square root of 1024

algorithm analysis:
 Newton's Algorithm does converge on the square root because each successive

approximation is closer than the previous one
 however, since the square root might be a non-terminating fraction it is

difficult to define the exact number of steps for convergence
 in general, the difference between the given approximation and the actual

square root is roughly cut in half by each successive refinement
 demonstrates O(log N) behavior

16

Algorithms and Programming

programming is all about designing and coding algorithms for solving
problems
 the intended executor is the computer or a program executing on that computer
 instructions are written in programming languages which are more constrained

and exact than human languages

the level of precision necessary to write programs can be frustrating to
beginners
 but it is much easier than it was 50 years ago

 early computers (ENIAC) needed to be wired to perform computations

 with the advent of the von Neumann architecture, computers could be
programmed instead of rewired

 an algorithm could be coded as instructions, loaded into the memory of
the computer, and executed

