
1

Chapter 5
JavaScript Numbers and Expressions

2

Data Types

each unit of information processed by a computer belongs to a general
category or data type
  e.g., string, number, Boolean (either true or false)

each data type is associated with a specific set of predefined operators that
may be used by programmers to manipulate values of that type
  e.g., we have seen string concatenation via +
  similarly, standard operators are predefined for numbers

  addition (+), subtraction (-), multiplication (*), division (/)

variables can be assigned various kinds of numerical values, including
mathematical expressions formed by applying operators to numbers
  when an expression appears on the right-hand side, the expression is evaluated

and the resulting value is assigned to the variable on the left-hand side

word = "howdy" + " doo"; "howdy doo"

 word

x = 50/4; 12.5

 x

3

Variables and Expressions

similarly, expressions can appear in write statements
  note: parentheses can be used to make sub-expression grouping explicit

document.write(3 + 7);  writes 10

document.write("The sum of is " + (3 + 7));  writes The sum is 10

if a variable appears in an expression, the value currently assigned to that
variable is substituted

4

Number Representation

useful facts about JavaScript numbers
  to improve readability, very large or very small number are displayed in

scientific notation: XeY represents the value X  10Y

  e.g., 1e24  1  1024  1000000000000000000000000

  JavaScript stores all numbers in memory cells of a fixed size (64 bits)
  as a result, only a finite number of values can be represented

  e.g., 1e308 can be represented, but 1e309 is treated as Infinity

 1e-323 can be represented, but 1e-324 is treated as 0

  even within the range 1e-323 . . . 1e309, not all numbers can be represented
  note that between any two numbers lie infinitely more numbers!
  JavaScript can represent approximately 17 significant digits

  e.g.., 0.9999999999999999 can be represented exactly

 0.99999999999999999 is rounded up to 1

5

Mixed Expressions

in JavaScript, the + operator serves two purposes
  when applied to numbers, + means addition
  when applied to strings, + means concatenation
  what about a mixed expression?

when applied to a string and a number,
  the number is converted to a string (effectively, by placing quotes around it),
  then string concatenation is performed

note: expressions involving + are
evaluated left-to-right
  this can have consequences in

the way mixed expressions are
evaluated

  ADVICE: always use parentheses
to group nested sub-expressions

6

Prompting for Numbers

special care must be taken when prompting the user for number values
  recall that prompt always returns a string, even if the user enters only digits
  e.g., if the user enters 500 at a prompt, then the value "500" is returned

myNumber = prompt("Enter a number", "");
document.write("One more is " + (myNumber + 1));

  if the user entered 12 at the prompt, what would be displayed?

  the message displayed would be One more is 121 WHY?

  the prompt returns "12" which is stored in myNumber

  the parenthesized sub-expression (myNumber + 1) is evaluated first

  since this is a mixed expression, the number 1 is converted to "1" then concatenated

  the result, "121", is then concatenated to the end of "One more is "

what is needed is a mechanism for converting strings of digits into numbers
  e.g., "500"  500, "1.314"  1.314, …

  this is accomplished in JavaScript using the parseFloat function

7

Functions

in mathematics, a function is a mapping from inputs to a single output
  e.g., the absolute value function maps one number to another

 -5  5, -2.4  2.4, 17  17, …

  similarly, the parseFloat function maps strings of digits to numbers
 "500"  500, "1.314"  1.314, "0"  0, …

from a programmer's view, a function is a "unit of computational abstraction"
  there is some computation required to calculate the output given the input(s)
  a JavaScript function encapsulates that computation and hides the details
  the user does not need to know how the function works, only how to apply it

  applying a function to inputs is known as calling the function
  the output of a function call is known as the return value

8

parseFloat

a function call can appear anywhere in a JavaScript expression
  when the expression is evaluated, the return value for that call is substituted

myNumber = prompt("Enter a number", "");

myNumber = parseFloat(myNumber);

document.write("One more is " + (myNumber + 1));

  the 1st statement prompts the user and stores their input (say "12")in myNumber

  the 2nd statement calls parseFloat to convert the string to a number (12) and then
reassigns that number back to myNumber

  the 3rd statement uses the number value 12 to display One more is 13

note, the following is not an error (but probably not what was intended)

myNumber = prompt("Enter a number", "");

parseFloat(myNumber);

document.write("One more is " + (myNumber + 1));

  the call to parseFloat returns a number, but nothing is done with that number
  NOTE: the only way to change the value of a variable is via an assignment statement

9

Temperature Conversion

the following page prompts the user for a temperature (in Fahrenheit), stores
the input as a number, then converts that temperature to Celsius

10

Conversion Page

note that the prompt
has a default value of 32

11

Common Pattern

many tasks that we will consider have the same basic form
1.  prompt the user for numbers
2.  store them in variables
3.  perform some calculation(s) using those numbers
4.  display the results

not surprisingly, there is a pattern to the code

<script type="text/javascript">
 number1 = prompt("PROMPT MESSAGE", "");
 number1 = parseFloat(number1);
 number2 = prompt("PROMPT MESSAGE", "");
 number2 = parseFloat(number2);
 . . .
 numberN = prompt("PROMPT MESSAGE", "");
 numberN = parseFloat(numberN);

 answer = SOME EXPRESSION INVOLVING number1, …, numberN;

 document.write("MESSAGE INVOLVING answer");
</script>

12

Predefined Functions

JavaScript provides an extensive library of predefined mathematical functions
  Math.sqrt returns the square root of a number

 e.g., Math.sqrt(9)  3

  Math.max returns the maximum of two numbers
 e.g., Math.max(3.2, 1.8)  3.2

13

Tester Page

this page could be
modified to test a
variety of functions

  change the function
call in the page

  enter various inputs
and observe the
corresponding outputs

14

Other Useful Functions

Math.pow raises a number to a power

Math.pow(2, 10)  210 = 1024

Math.pow(2, -1)  2-1 = 0.5

Math.pow(9, 0.5)  90.5 = 3

Math.random generates a random number in the range [0…1)
  note: this function has no inputs; it returns a different number each call

Math.random()  0.33008525626748814

Math.random()  0.213335955823927

Math.random()  0.8975001737758223

.

.

.

15

Errors and Debugging

in computer jargon, the term bug refers to an error in a program
  the process of systematically locating and fixing errors is debugging

three types of errors can occur
1.  syntax errors: typographic errors

  e.g., omitting a quote or misspelling a function name
  since the browser catches these, they are usually "easy" to identify and fix

2.  run-time errors: occur when operations are applied to illegal values
  e.g., attempting to multiply a string or divide by zero
  also caught by the browser, which either produces an error message or else returns a

special value (string multiplication produces NaN, for "Not a Number"; division by zero
produces Infinity)

3.  logic errors: flaws in the design or implementation of a program
  whenever your program produces the wrong result
  since they are not caught by the browser (the program is legal, just not what you

wanted), logic errors are hardest to identify

useful technique for identifying bugs: diagnostic write statements
  at various intervals in the code, write out the values of key variables
  you can then isolate at what point the program is going wrong

