CIS 313, Intermediate Data Structures Winter 2010

Assignment 1

due Friday, January 15, 2010

1. Suppose that algorithm \mathcal{A} uses $293907 \cdot n^{3}$ operations while algorithm \mathcal{B} uses $3 \cdot n^{5}$ operations. Determine the value n_{0} such that \mathcal{A} is as fast or faster than \mathcal{B} for all $n \geq n_{0}$. [4 points]
2. exercise $3.1-4$, p 53. Additionally, is $2^{2^{n+1}}=O\left(2^{2^{n}}\right)$? [4 points]
3. exercise $3-2$, p 61. [8 points]
4. exercise $3-3$, part a (not part b), pp 61-62. [8 points]
5. An algorithm takes 0.2 ms for input size 10 (this allows you to determine the constant c, which will be different in each case). How large of an input size n can be solved in an hour if the run time of the algorithm is ... ?
(a) $c n$
(b) $c n \log n$
(c) $c n^{3}$
(d) $c 2^{n}$
[8 points]
6. Describe how to find the minimum and maximum of an array of n elements with at most $\frac{3}{2} n$ element comparisons. (Do not count comparisons needed for the array indices, just comparisons of array elements.) [4 points]

Total: 36 points

Notes:

- For Q2, we are not asking you to do questions 1 through 4. Just question 4 of section 3.1.
- In Q4, ignore any function involving a $\lg ^{*}$.
- An $m s$ is $1 / 1000$ of a second.
- Hint for Q6: form $\left\lceil\frac{n}{2}\right\rceil$ pairs, from each pair find candidate min and candidate max for the whole list.

