Assignment 1

due Friday, January 15, 2010

- 1. Suppose that algorithm \mathcal{A} uses $293907 \cdot n^3$ operations while algorithm \mathcal{B} uses $3 \cdot n^5$ operations. Determine the value n_0 such that \mathcal{A} is as fast or faster than \mathcal{B} for all $n \geq n_0$. [4 points]
- 2. exercise 3.1-4, p 53. Additionally, is $2^{2^{n+1}} = O(2^{2^n})$? [4 points]
- 3. exercise 3-2, p 61. [8 points]
- 4. exercise 3-3, part a (not part b), pp 61-62. [8 points]
- 5. An algorithm takes 0.2ms for input size 10 (this allows you to determine the constant c, which will be different in each case). How large of an input size n can be solved in an hour if the run time of the algorithm is ...?
 - (a) c n
 - (b) $c n \log n$
 - (c) $c n^3$
 - (d) $c 2^n$

[8 points]

6. Describe how to find the minimum and maximum of an array of n elements with at most $\frac{3}{2}n$ element comparisons. (Do not count comparisons needed for the array indices, just comparisons of array elements.) [4 points]

Total: 36 points

Notes:

- For Q2, we are **not** asking you to do questions 1 through 4. Just question 4 of section 3.1.
- In Q4, ignore any function involving a lg^{*}.
- An ms is 1/1000 of a second.
- Hint for Q6: form $\lceil \frac{n}{2} \rceil$ pairs, from each pair find candidate min and candidate max for the whole list.