CIS 313 Intermediate Data Structures

 Winter 2010
Assignment 3

due Wednesday, February 3, 2010

1. Draw the binary tree whose inorder traversal is jlgifmcehbdak and whose postorder traversal is jgfilcebadhkm. [5 points]
2. The balance factor of an internal node v of a binary tree is the difference between the heights of the left and right subtrees of v. Write a recursive routine which will print the balance factors of all nodes in a binary tree. What is the running time of this routine? [$\mathbf{6}$ points]
3. Consider an ordered tree T and a binary tree T^{\prime} representing it, using the first-child nextsibling representation (section 10.4). An inorder traversal of T^{\prime} is equivalent to what kind of traversal of T ? [4 points]
4. In class we defined the internal path length I and the external path length E, both measures of a binary tree. If that tree has n (internal) nodes, show that $E=I+2 n$. (This is exercise B.5-5, p 1091.) [8 points]
5. Consider the tree of Figure 12.2 on p 257. How many different permutations of the values it contains, when inserted in that order, will yield this particular tree? [8 points]
6. How many permutations of $1,2, \ldots, n$ yield a skew tree? (Since any one skew tree is generated by just one permutation, this question is asking for the number of skew trees of n nodes.) [5 points]
7. (Search path splitting a BST) Exercise 12.2-4, p 260. [4 points]

Total: 40 points

Notes:

- (Q2) Consider the following three formulas:
$-\operatorname{height}($ null $)=-1$
$-\operatorname{height}(p)=1+\max \{h e i g h t(p . l e f t), \operatorname{height}(p . \operatorname{right})\}$
$-\operatorname{balFac}(p)=\operatorname{height}(p . l e f t)-\operatorname{height}(p . r i g h t)$
These suggest that you may want to compute the height and the balance factor at the same time. You may simply print out the balance factors, in any order.
- (Q3) To get T^{\prime}, imagine the first-child as a left pointer and the next-sibling as a right pointer.
- (Q4) We had $I=\sum_{v \in V} d(v)$, where V is the set of nodes and $d(v)$ is the depth of a node. E is defined similarly, over all external nodes. You will want to use induction.
- (Q5) Consider a tree where
- the left subtree contains n nodes and is generated by r permutations
- the right subtree contains m nodes and is generated by s permutations Then the whole tree contains $n+m+1$ nodes and is generated by $r \cdot s \cdot\binom{n+m}{n}$ permutations.

