

Welcome back!

Data structures lab – week 3

Wake-up quiz

● Based on your intuition (or knowledge),
which of the following statements is true
about Linked Lists (LL) and binary search
trees (BST):

a) LLs have faster search time than BSTs

b) BSTs have faster search time than LLs

c) They have the same search time

● Correct answer is c.
– After this class, you will know why.

Outline

● Last week
● Winter warmup comments

– Hints for future success

● Pseudo-code to implementation-code
● Trees in the forest
● Assignment 2

By the way, did you know that C++ was originally
invented by a Danish guy?

Week 2 recap

● How a lab lecture works
● Linked Lists

– Revisited today

● Coding guidelines
– Also revisited today

● Assignment questions
– May be revisited today

● But hopefully, you all did assignment 1 by
now.

Week 2 class evaluation

● 100% increase in responses!
– Up from 7 to 14

● Selected comments (slightly edited)
– ”Cover more material”

– ”Spend more time on projects”

– ”Eclipse is not everything”

– ”go ducks!!!”

● Full survey results online

Hints for success

● Hint number 1: Read the assignment
● ”You should conform exactly to the input

and output specification.”
– ”Let me say that again: conform exactly

to the input and output specification”
● This is from the website.

● Many had extra stuff in there.
– ”Please input a number”

– ”Please input a name”

Hints for success

● Hint number 2: Look at your code
#include <warmup.h>

#include <iostream>

using namespace std;

int main() {

std::cout << ”I like to do
more than necessary”;

return 0;

}

● What's wrong here?

Not included

std:: not necessary

Hints for succes

● Hint number 3: Comply with standards.
– And knowledgeable people.

● Quote from the C++ FAQ Lite:
– ”main() must return int. Not void, not

bool, not float. int. Just int, nothing
but int, only int.”

● With g++, ”void main()” will not compile,
”main()” will.

– But that does not make it correct

Hints for success

● Hint number 4: Use large test cases

char[400][100]

– Stores 400 names of length 100

– What's wrong with that?

● It is easier to catch errors like the above.
● It is easier to get a feel for running time.

Hints for success + prosperity

● Hint number 5: Use the terminal.
● Easier for testing large test cases

– ./myProgram < largeTestCase >
outputTestcase

● Eclipse can still be used as development
environment, if you prefer.

● The terminal is powerful beyond C++!

Wake-up quiz – hints for success

● What was hint number 1?

a) Use the terminal

b) Use large test cases

c) Comply with standards

d) Look at your code

e) Read the assignment

● e is correct but they are all important!

From pseudo to implementation

● Find an algorithm in pseudocode
● (Understand the algorithm)
● Implement the algorithm
● Wait, how do we do this again?

– I don't know what pseudocode is

– I don't know where to find the pseudocode

– What about data structures?

● Well, listen closely

A pseudo stack

● I want to implement a stack and the
elementary stack operations

● I look at chapter 10 in Cormen
– This is where the pseudocode is.

● I see something that has line numbers and
a different font than everything else

– This is the pseudocode.

A pseudo stack

● Now, I have the pseudocode for
– StackEmpty(S), checks if S is empty

– Push(S,x), add element x on to S

– Pop(S), remove the top element from S

● But what is S?
– It depends on the situation.

– It depends on what I need.

– But I need to know at least the top element

A stack implementation

struct element {
string name;
element * below_me;

};

struct stack {
element * top;

};

A stack implementation
bool stackEmpty(stack& S) {

if (S.top == NULL)
return true;

return false;
}

void push(stack& S, element& x) {
x.below_me = S.top;
S.top = &x;

}

element * pop(stack& S) {
element * x;
x = S.top;
S.top = x->below_me;
return x;

}

Wake-up quiz – stack 'em up

● A Linked List can represent both stacks
and queues. Can stacks by themselves be
used to represent a queue?

a) yes, we need one stack to do it.

b) yes, we need two stacks to do it.

c) yes, we need three stacks to do it.

d) no

● Correct answer is b.

A queue – stack style

● I want to implement a queue using two
stacks.

● I already have a stack data structure.
● I need the pseudocode for the queue

operations.
– I don't have this.

● Yay, I get to solve a problem.

A queue – stack style

● EnQueue(Q,x)
– Just push x onto head.

● DeQueue(Q)
– If tail is empty

● Loop until head is empty
– Pop element x form head
– Push element x to tail

– Return Pop of tail

A queue – stack style

● How does the data structure look?

struct queue {

 stack head;

 stack tail;

};

A queue – stack style
void enQueue(queue& Q, element& x) {

push(Q.head,x);
}

element * deQueue(queue& Q) {
if (stackEmpty(Q.tail)) {

while (!stackEmpty(Q.head)) {
element * x;
x = pop(Q.head);
push(Q.tail,*x);

}
}
return pop(Q.tail);

}

From pseudo to implementation

● Look in the book
● Identify the important features of a data

structure or choose existing one
● Try to map the pseudocode to the

programming language
– Pseudocode does not know the difference

between a pointer and a reference
● (Do you?)

Trees in the forest

This is a binary search tree

Binary search trees

● Every node has at most 2 children.
● Every node consists of:

– A key

– A pointer to the left child, left

– A pointer to the right child, right

– A pointer to the parent, p

Binary search trees

● Every node x satisfies the binary-search-
tree-property (bstp):

– For every node y in the left subtree of x:
● y.key <= x.key

– For every node y in the right subtree of x:
● y.key >= x.key

Binary search tree

● Often used for search
● Because of the bstp, searching for a value

k is pretty straightforward
– Start at the root r

– If k < r.key
● Go left

– Else
● Go right

● Insertion is similar

Tree Search

Wake-up quiz – BSTs

● A BST T has n nodes and height h
● What is the running time of tree-search?

a) O(lg n)

b) O(h)

c) O(n)

d) O(n^2)

● Correct answer is b
– For a complete binary tree, h = lg n

Assignment 2

● Implement a binary search tree data
structure.

– Support insert and search

– Do not bother about deletion

● Expand your linked list from A1 to include
searching

● Compare running time for search with BST
and LL.

Assignment 2

● Back to the first warm-up question
● What happens if the BST is just one big

line of nodes?
– LL and BST running time is the same!

– O(n)

– How can we deal with this?

Assignment 2

● We want the BST to have height lgn
● We can balance the tree

– coming up later in the term

● We can randomize the insertion
– You will do this in the assignment.

– Hopefully, this will lead to a performance
boost.

● The book says it does.
● You should measure it.

Programming help

● H.E.L.P. = Help Enhances the Learning
Process.

● Every Monday, 5pm-6pm
● Deschutes 100.
● Things you should do:

– Read the assignment beforehand

– Have specific questions

– Try on your own before asking

Grades

● You have each been assigned a ”secret”
number, avoiding the use of student ids.

● As an extra bonus, you will have to figure
out the secret number yourself. Here's
how:

– Create a C++ program and:
● Use your student id as the ”seed” for the

standard random number generator
● Read the random number

● Grades will be posted later today

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

