
  

Welcome back!

Data structures lab – week 3



  

Wake-up quiz

● Based on your intuition (or knowledge), 
which of the following statements is true 
about Linked Lists (LL) and binary search 
trees (BST):

a) LLs have faster search time than BSTs

b) BSTs have faster search time than LLs

c) They have the same search time

● Correct answer is c.
– After this class, you will know why.



  

Outline

● Last week
● Winter warmup comments

– Hints for future success

● Pseudo-code to implementation-code
● Trees in the forest
● Assignment 2

By the way, did you know that C++ was originally 
invented by a Danish guy?



  

Week 2 recap

● How a lab lecture works
● Linked Lists

– Revisited today

● Coding guidelines
– Also revisited today

● Assignment questions
– May be revisited today

● But hopefully, you all did assignment 1 by 
now.



  

Week 2 class evaluation

● 100% increase in responses!
– Up from 7 to 14

● Selected comments (slightly edited)
– ”Cover more material”

– ”Spend more time on projects”

– ”Eclipse is not everything”

– ”go ducks!!!”

● Full survey results online



  

Hints for success

● Hint number 1: Read the assignment
● ”You should conform exactly to the input 

and output specification.”
– ”Let me say that again: conform exactly 

to the input and output specification”
● This is from the website.

● Many had extra stuff in there.
– ”Please input a number”

– ”Please input a name”



  

Hints for success

● Hint number 2: Look at your code
#include <warmup.h>

#include <iostream>

using namespace std;

int main()  {

std::cout << ”I like to do 
more than necessary”;

return 0;

}

● What's wrong here?

Not included

std:: not necessary



  

Hints for succes 

● Hint number 3: Comply with standards.
– And knowledgeable people.

● Quote from the C++ FAQ Lite:
– ”main() must return int. Not void, not 

bool, not float. int. Just int, nothing 
but int, only int.”

● With g++, ”void main()” will not compile, 
”main()” will.

– But that does not make it correct



  

Hints for success

● Hint number 4: Use large test cases

char[400][100]

– Stores 400 names of length 100

– What's wrong with that?

● It is easier to catch errors like the above.
● It is easier to get a feel for running time.



  

Hints for success + prosperity

● Hint number 5: Use the terminal.
● Easier for testing large test cases

– ./myProgram < largeTestCase > 
outputTestcase

● Eclipse can still be used as development 
environment, if you prefer.

● The terminal is powerful beyond C++!



  

Wake-up quiz – hints for success

● What was hint number 1?

a) Use the terminal

b) Use large test cases

c) Comply with standards

d) Look at your code

e) Read the assignment

● e is correct but they are all important!



  

From pseudo to implementation

● Find an algorithm in pseudocode
● (Understand the algorithm)
● Implement the algorithm
● Wait, how do we do this again?

– I don't know what pseudocode is

– I don't know where to find the pseudocode

– What about data structures?

● Well, listen closely



  

A pseudo stack

● I want to implement a stack and the 
elementary stack operations

● I look at chapter 10 in Cormen
– This is where the pseudocode is.

● I see something that has line numbers and 
a different font than everything else

– This is the pseudocode.



  

A pseudo stack

● Now, I have the pseudocode for
– StackEmpty(S), checks if S is empty

– Push(S,x), add element x on to S

– Pop(S), remove the top element from S

● But what is S?
– It depends on the situation.

– It depends on what I need.

– But I need to know at least the top element



  

A stack implementation

struct element {
string name;
element * below_me;

};

struct stack {
element * top;

};



  

A stack implementation
bool stackEmpty(stack& S) {

if (S.top == NULL)
return true;

return false;
}

void push(stack& S, element& x) {
x.below_me = S.top;
S.top = &x;

}

element * pop(stack& S) {
element * x;
x = S.top;
S.top = x->below_me;
return x;

}



  

Wake-up quiz – stack 'em up

● A Linked List can represent both stacks 
and queues. Can stacks by themselves be 
used to represent a queue?

a) yes, we need one stack to do it.

b) yes, we need two stacks to do it.

c) yes, we need three stacks to do it.

d) no

● Correct answer is b.



  

A queue – stack style

● I want to implement a queue using two 
stacks.

● I already have a stack data structure.
● I need the pseudocode for the queue 

operations.
– I don't have this.

● Yay, I get to solve a problem.



  

A queue – stack style

● EnQueue(Q,x)
– Just push x onto head.

● DeQueue(Q)
– If tail is empty

● Loop until head is empty
– Pop element x form head
– Push element x to tail

– Return Pop of tail



  

A queue – stack style

● How does the data structure look?

struct queue {

   stack head;

   stack tail;

};



  

A queue – stack style
void enQueue(queue& Q, element& x) {

push(Q.head,x);
}

element * deQueue(queue& Q) {
if (stackEmpty(Q.tail)) {

while (!stackEmpty(Q.head)) {
element * x;
x = pop(Q.head);
push(Q.tail,*x);

}
}
return pop(Q.tail);

}



  

From pseudo to implementation

● Look in the book
● Identify the important features of a data 

structure or choose existing one
● Try to map the pseudocode to the 

programming language
– Pseudocode does not know the difference 

between a pointer and a reference
● (Do you?)



  

Trees in the forest

This is a binary search tree



  

Binary search trees

● Every node has at most 2 children.
● Every node consists of:

– A key

– A pointer to the left child, left

– A pointer to the right child, right

– A pointer to the parent, p



  

Binary search trees

● Every node x satisfies the binary-search-
tree-property (bstp):

– For every node y in the left subtree of x:
● y.key <= x.key

– For every node y in the right subtree of x:
● y.key >= x.key



  

Binary search tree

● Often used for search
● Because of the bstp, searching for a value 

k is pretty straightforward
– Start at the root r

– If k < r.key
● Go left

– Else
● Go right

● Insertion is similar



  

Tree Search



  

Wake-up quiz – BSTs

● A BST T has n nodes and height h
● What is the running time of tree-search?

a) O(lg n)

b) O(h)

c) O(n)

d) O(n^2)

● Correct answer is b
– For a complete binary tree, h = lg n



  

Assignment 2

● Implement a binary search tree data 
structure.

– Support insert and search

– Do not bother about deletion

● Expand your linked list from A1 to include 
searching

● Compare running time for search with BST 
and LL.



  

Assignment 2

● Back to the first warm-up question
● What happens if the BST is just one big 

line of nodes?
– LL and BST running time is the same!

– O(n)

– How can we deal with this?



  

Assignment 2

● We want the BST to have height lgn
● We can balance the tree

– coming up later in the term

● We can randomize the insertion
– You will do this in the assignment.

– Hopefully, this will lead to a performance 
boost.

● The book says it does.
● You should measure it.



  

Programming help

● H.E.L.P. = Help Enhances the Learning 
Process.

● Every Monday, 5pm-6pm
● Deschutes 100.
● Things you should do:

– Read the assignment beforehand

– Have specific questions

– Try on your own before asking



  

Grades

● You have each been assigned a ”secret” 
number, avoiding the use of student ids.

● As an extra bonus, you will have to figure 
out the secret number yourself. Here's 
how:

– Create a C++ program and:
● Use your student id as the ”seed” for the 

standard random number generator
● Read the random number

● Grades will be posted later today



  

Thank you

Questions?
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