

Welcome back!

Data structures lab – week 4

Can you belive it's week 4 already?

Wake-up quiz

● Which of the following trees is a binary
search tree?

● The one on the right is a BST.

Week 3 recap

● Hints for future success
– More of that today

● From pseudo code to implementation code
● Trees in the forest
● Assignment 2 description

– Revisited today.

Week 3 class evaluation

● To the slow/easy side – but interesting
● Selected comments (slightly edited):

– ”Good amount of content covered today!”

– ”... more & faster, please?”

– ”Give us C++ code to generate the secret number”

● Would defeat the purpose of the exercise.
– ”do more on the assignments”

– ”the wake-up quizzes were a neat touch.”

● Full survey results found online

Outline

● Last week
● Assignment 1 comments

– More hints for future success

● Assignment 2
– Searching for stuff

Hints for success

● Hint number 1: Read the assignment
● ”You should conform exactly to the input

and output specification.”
– ”Let me say that again: conform exactly

to the input and output specification”
● This is from the website.

● Many had extra stuff in there.

Hints for success

● Hint number 2: Look at your code
● Hint number 3: Comply with standards
● Hint number 4: Use large test cases
● Hint number 5: Use the terminal

Hints for success

● Hint number 6: Use IX and g++
● I compile with g++
● My compiler is very strict

– Unlike MinGW's/Windows' version
● Apparently?

● Ergo, compile with the same compiler as
mine and do it on the IX server.

Compiling on IX

● Get a CS account
● Log onto the iMacs in Deschutes 100
● Compile your code from the command line
● Result:

– Bigger chance that I can compile your code

– Less likely that I will become slightly
irritated.

● I only ever get slightly irritated
– Lucky you :-)

Compiling on the IX – from home

● Linux (what I do):
– Transfer files via sftp

● I use FileZilla

– Open a terminal

– ssh username@ix.cs.uoregon.edu

– Do I need to tell you more?

● Mac:
– The same

mailto:username@ix.cs.uoregon.edu

Compiling on IX – from home

● Windows (what I did):
– Transfer files via sftp

● FileZilla is also fine on Windows

– Download PuTTY
● Link on the website

– Use PuTTY to ssh to IX
● See previous slide.

Hints for success

● Hint number 7: Fear the NULL
struct linkedList {

node * head;

void add(node * x) {

if (head == NULL)
// Do something

}

}

● Is this good?

Hints for success

● Hint number 7: Fear the NULL
● In Java:

– Variables automatically initialized to null

– null problems = NullPointerException

● In C++:
– Variables NOT automatically initialized

– NULL problems = Segmentation Fault
● What the heck?

Hints for success

struct linkedList {

node * head;

linkedList() {

head = NULL;

}

void add(node * x) {

if (head == NULL)

// Do something
}

}

Good

Hints for success

● Hint number 8: Use a debugger
– GDB is a good choice

– Eclipse uses GDB by default
● As far as I remember

● Command-line GDB can be difficult
– But it's very doable

– Compile code with -g option

– Commands you need for basic debugging:
● Run, backtrace, step, list, print, break

Hints for success

● Hint number 9: Start earlier
● In the submission notes: ”This or that was

ambiguous” or what ever
– Could have been resolved with an email

● This tells me: He/she started too late
● This thought is in my mind the entire time

while grading.
● This is not beneficial to you

● Programming takes longer than essays
– Especially debugging.

Wake-up quiz – BSTs

● We have seen that LinkedLists and BSTs
have similar search times in worst case.

● What about insert time?

a) A LL has faster insert time than a BST

b) A BST has faster insert time than a LL

c) They have the same insert time.

● Correct answer is a
– Is it a fair comparison?

Binary search trees

● Every node has at most 2 children.
● Every node consists of:

– A key

– A pointer to the left child, left

– A pointer to the right child, right

– A pointer to the parent, p

● Btw, how is this implemented in C++?

Binary search trees
struct BSTNode {

int key;
BSTNode * left;
BSTNode * right;
BSTNode * p;

}

struct BinarySearchTree {
BSTNode * root;

}

Don't forget the constructors!

Binary search trees

● Every node x satisfies the binary-search-
tree-property (bstp):

– For every node y in the left subtree of x:
● y.key <= x.key

– For every node y in the right subtree of x:
● y.key >= x.key

Binary search trees

● What does the bstp give us?
– O(h) insert operation

– O(h) find operation

– O(h) delete operation

● But h could be the number of nodes in the
tree = slow.

BST versus LL

● Let's summarize

● Why would we ever use a BST?
– If h = lg n, then it's pretty good

● Requires balancing
– Or random insertions

– Assuming worst case, what else could we
possibly want to do?

Data structure Insert Find Delete

Linked List O(1) O(n) O(1)

Binary Search Tree O(h) O(h) O(h)

BST versus LL

● Because of the bstp, the tree is sorted!
● Inorder-Tree-Walk runs in O(n)
● For a Linked List... O(n^2)
● Is this significant in reality?

– Let's try it!

BST versus LL – tested

● We want to test insertion
– Both in worst and average case for BST.

● We want to test insertion + sorted printing
– Both in worst and average case for BST.

● We hope we can see a difference
– This is our hypothesis

BST versus LL – test recipe

1) Implement LL

2) Implement BST

3) Run tests

4) Look at results

5) Conclude

(1) Linked List testing

● Implement a Linked List
● Each node:

– next pointer

– key integer

● The List:
– head pointer

– tail pointer

– size, for convenience

(1) Linked List testing

● Implement insert(list,x) in O(1) time.
– Just insert x at the tail of the list.

● Implement printInOrder(list) in O(n^2) time.
– For i = 0 to list.size

● Search for minimum element that has not
been printed

● Print the element

(2) Binary search tree testing

● Implement a binary search tree
● Each node:

– left, right and p pointer

– key integer

● The BST:
– root pointer

(2) Binary search tree testing

● Implement insert(bst,x) in O(h) time.
– Copy almost exactly from Cormen

● Tree-Insert, section 12.3

● Implement printInOrder(bst) in O(n) time.
– Copy almost exactly from Cormen

● Inorder-Tree-Walk, section 12.1

(3) Run tests

● time ./bst < testcase_slow > out
● time ./bst < testcase_better > out
● time ./LL < testcase_slow > out
● time ./LL < testcase_better > out

– I write to file ”out” to reduce time to print to
the console

(4) Look at results

● Insertion only

Binary Search Tree Linked List
0

50

100

150

200

250

300

350

400

450

Worst
case
Better
case

(4) Look at results

● Insertion + sorted printing

Binary Search Tree
Linked List

0

100

200

300

400

500

600

700

800

900

1000

Worst
case
Better
case

(5) Conlusion

● BST is much faster than LL for printing in
sorted order

– Even in the worst case!

● BST is REALLY bad for insertion in the
worst case

● Confirms our wakeup quiz from before.
● Congratulations, you've just seen your first
Ω(n lgn) sorting algorithm!

Searching for stuff

● Why did I show you all that?
● Does it look familiar?
● Similar to assignment 2

– Comparison of find instead of sorted print

– Worst/best case performance for BST

Wake-up quiz – assignment 2

● 100,000 find operations on a particular LL
implementation takes 1 seconds.

● How much do we expect for 200,000?

a) 1.1 seconds

b) 2 seconds

c) 4 seconds

d) 8 seconds

● Correct answer is b.

Assignment 2

READ the assignment.
When you've read it, read it again.

Assignment 2 – task

● We want to test find
– Both in worst and average case for BST.

– Both for LL and BST

● We want to analyze the find running time
for BST and LL

● We want to compare the find running time
for BST and LL

● We hope we can see a difference
– This is our hypothesis

Assignment 2 – recipe

1) Implement LL

2) Implement BST

3) Run tests

4) Look at results

5) Conclude

Assignment 2

● Implement a binary search tree data
structure.

– Support insert and search

– Do not bother about deletion

– Do not balance the tree!

● Expand your linked list from A1 to include
searching.

● Compare running time for search with BST
and LL.

Assignment 2 – testing

● I have supplied 8 testcases
● ”Slow”, simulates worst case for BST

– 10 thousand node insertions

– 50, 100, 150 or 200 find operations

– Named 10k_50k_slow, 10k_100k_slow etc.

● ”Better”, simulates random insertion
– Same number of and insertions and finds

– Named 10k_50k_better, 10k_100k_better
etc.

Assignment 2 – evaluation

● To be able to evaluate your solutions, your
programs will have to produce some output

● For each find operation, print the number of
nodes you looked at to get there.

– Including the target node itself

– By the way, this can also be used as a
measure of speed

– Would probably be a good idea to return
this value from the find operation.

● Well explained on the website

Assignment 2 – questions

● Should our BST have any functions for
balancing itself?

– No, not this time.
● It is even IMPORTANT that you do not!

● How would we do that?
– Don't

● But go to Chris' lecture tomorrow
– He will talk about AVL trees. Something not

found in the book!

Assignment 2 – questions

● ”How should we be handling inputs less
than 1?”

– Expect testcases to be similar to the ones I
have supplied

● Ergo: input size > 1

● ”Is it OK to measure the performance of
data structures in terms of milliseconds
instead of seconds?”

– Yes

Assignment 2 – questions

● ”Do we need to submit circle list and bst
with their respective main files?”

– The assignment description says exactly
what to turn in.

● A LinkedList implementation
● A BST implementation
● A small discussion

– Elaborated on the website.

Assignment 2 – questions

● ”Since I have a computer running on 4
cores, even the worst case with linked-list
gives me 0 seconds”

– This is of course possible

– I ”only” have a Core 2 Duo with 2GHz.

– I have uploaded a tool so you can create
extra testcases

● Check the website

Assignment 2

● My results

50k 100k 150k 200k

0

1

2

3

4

5

6

7

8

9

10

Worst case

Binary
Search
Tree
Linked
List

Assignment 2

● My results

50k 100k 150k 200k

0

1

2

3

4

5

6

7

8

9

10

Average case (better)

Binary
Search
Tree
Linked List

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

