
  

Welcome back!

Data structures lab – week 4

Can you belive it's week 4 already?



  

Wake-up quiz

● Which of the following trees is a binary 
search tree?

● The one on the right is a BST.



  

Week 3 recap

● Hints for future success
– More of that today

● From pseudo code to implementation code
● Trees in the forest
● Assignment 2 description

– Revisited today.



  

Week 3 class evaluation

● To the slow/easy side – but interesting
● Selected comments (slightly edited):

– ”Good amount of content covered today!”

– ”... more & faster, please?”

– ”Give us C++ code to generate the secret number”

● Would defeat the purpose of the exercise.
– ”do more on the assignments”

– ”the wake-up quizzes were a neat touch.”

● Full survey results found online



  

Outline

● Last week
● Assignment 1 comments

– More hints for future success

● Assignment 2
– Searching for stuff



  

Hints for success

● Hint number 1: Read the assignment
● ”You should conform exactly to the input 

and output specification.”
– ”Let me say that again: conform exactly 

to the input and output specification”
● This is from the website.

● Many had extra stuff in there.



  

Hints for success

● Hint number 2: Look at your code
● Hint number 3: Comply with standards
● Hint number 4: Use large test cases
● Hint number 5: Use the terminal



  

Hints for success

● Hint number 6: Use IX and g++
● I compile with g++
● My compiler is very strict

– Unlike MinGW's/Windows' version
● Apparently?

● Ergo, compile with the same compiler as 
mine and do it on the IX server.



  

Compiling on IX

● Get a CS account
● Log onto the iMacs in Deschutes 100
● Compile your code from the command line
● Result:

– Bigger chance that I can compile your code

– Less likely that I will become slightly 
irritated.

● I only ever get slightly irritated
– Lucky you :-)



  

Compiling on the IX – from home

● Linux (what I do):
– Transfer files via sftp

● I use FileZilla

– Open a terminal

– ssh username@ix.cs.uoregon.edu

– Do I need to tell you more?

● Mac:
– The same

mailto:username@ix.cs.uoregon.edu


  

Compiling on IX – from home

● Windows (what I did):
– Transfer files via sftp

● FileZilla is also fine on Windows

– Download PuTTY
● Link on the website

– Use PuTTY to ssh to IX
● See previous slide.



  

Hints for success

● Hint number 7: Fear the NULL
struct linkedList {

node * head;

void add(node * x) {

if (head == NULL) 
// Do something

}

}

● Is this good?



  

Hints for success

● Hint number 7: Fear the NULL
● In Java:

– Variables automatically initialized to null

– null problems = NullPointerException

● In C++:
– Variables NOT automatically initialized

– NULL problems = Segmentation Fault
● What the heck?



  

Hints for success

struct linkedList {

node * head;

linkedList() {

head = NULL;

}

void add(node * x) {

if (head == NULL) 

// Do something
}

}

Good



  

Hints for success

● Hint number 8: Use a debugger
– GDB is a good choice

– Eclipse uses GDB by default
● As far as I remember

● Command-line GDB can be difficult
– But it's very doable

– Compile code with -g option

– Commands you need for basic debugging:
● Run, backtrace, step, list, print, break



  

Hints for success

● Hint number 9: Start earlier
● In the submission notes: ”This or that was 

ambiguous” or what ever
– Could have been resolved with an email

● This tells me: He/she started too late
● This thought is in my mind the entire time 

while grading.
● This is not beneficial to you

● Programming takes longer than essays
– Especially debugging.



  

Wake-up quiz – BSTs

● We have seen that LinkedLists and BSTs 
have similar search times in worst case.

● What about insert time?

a) A LL has faster insert time than a BST

b) A BST has faster insert time than a LL

c) They have the same insert time.

● Correct answer is a
– Is it a fair comparison?



  

Binary search trees

● Every node has at most 2 children.
● Every node consists of:

– A key

– A pointer to the left child, left

– A pointer to the right child, right

– A pointer to the parent, p

● Btw, how is this implemented in C++?



  

Binary search trees
struct BSTNode {

int key;
BSTNode * left;
BSTNode * right;
BSTNode * p;

}

struct BinarySearchTree {
BSTNode * root;

}

Don't forget the constructors!



  

Binary search trees

● Every node x satisfies the binary-search-
tree-property (bstp):

– For every node y in the left subtree of x:
● y.key <= x.key

– For every node y in the right subtree of x:
● y.key >= x.key



  

Binary search trees

● What does the bstp give us?
– O(h) insert operation

– O(h) find operation

– O(h) delete operation

● But h could be the number of nodes in the 
tree = slow.



  

BST versus LL

● Let's summarize

● Why would we ever use a BST?
– If h = lg n, then it's pretty good

● Requires balancing
– Or random insertions

– Assuming worst case, what else could we 
possibly want to do?

Data structure Insert Find Delete

Linked List O(1) O(n) O(1)

Binary Search Tree O(h) O(h) O(h)



  

BST versus LL

● Because of the bstp, the tree is sorted!
● Inorder-Tree-Walk runs in O(n)
● For a Linked List... O(n^2)
● Is this significant in reality?

– Let's try it!



  

BST versus LL – tested

● We want to test insertion
– Both in worst and average case for BST.

● We want to test insertion + sorted printing
– Both in worst and average case for BST.

● We hope we can see a difference
– This is our hypothesis



  

BST versus LL – test recipe

1) Implement LL

2) Implement BST

3) Run tests

4) Look at results

5) Conclude



  

(1) Linked List testing

● Implement a Linked List
● Each node:

– next pointer

– key integer

● The List:
– head pointer

– tail pointer

– size, for convenience



  

(1) Linked List testing

● Implement insert(list,x) in O(1) time.
– Just insert x at the tail of the list.

● Implement printInOrder(list) in O(n^2) time.
– For i = 0 to list.size

● Search for minimum element that has not 
been printed

● Print the element



  

(2) Binary search tree testing

● Implement a binary search tree
● Each node:

– left, right and p pointer

– key integer

● The BST:
– root pointer



  

(2) Binary search tree testing

● Implement insert(bst,x) in O(h) time.
– Copy almost exactly from Cormen

● Tree-Insert, section 12.3

● Implement printInOrder(bst) in O(n) time.
– Copy almost exactly from Cormen

● Inorder-Tree-Walk, section 12.1



  

(3) Run tests

● time ./bst < testcase_slow > out
● time ./bst < testcase_better > out
● time ./LL < testcase_slow > out
● time ./LL < testcase_better > out

– I write to file ”out” to reduce time to print to 
the console



  

(4) Look at results

● Insertion only
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(4) Look at results

● Insertion + sorted printing
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(5) Conlusion

● BST is much faster than LL for printing in 
sorted order

– Even in the worst case!

● BST is REALLY bad for insertion in the 
worst case

● Confirms our wakeup quiz from before.
● Congratulations, you've just seen your first 
Ω(n lgn) sorting algorithm!



  

Searching for stuff

● Why did I show you all that?
● Does it look familiar?
● Similar to assignment 2

– Comparison of find instead of sorted print

– Worst/best case performance for BST



  

Wake-up quiz – assignment 2

● 100,000 find operations on a particular LL 
implementation takes 1 seconds.

● How much do we expect for 200,000?

a) 1.1 seconds

b) 2 seconds

c) 4 seconds

d) 8 seconds

● Correct answer is b.



  

Assignment 2

READ the assignment.
When you've read it, read it again.



  

Assignment 2 – task

● We want to test find
– Both in worst and average case for BST.

– Both for LL and BST

● We want to analyze the find running time 
for BST and LL

● We want to compare the find running time 
for BST and LL

● We hope we can see a difference
– This is our hypothesis



  

Assignment 2 – recipe

1) Implement LL

2) Implement BST

3) Run tests

4) Look at results

5) Conclude



  

Assignment 2

● Implement a binary search tree data 
structure.

– Support insert and search

– Do not bother about deletion

– Do not balance the tree!

● Expand your linked list from A1 to include 
searching.

● Compare running time for search with BST 
and LL.



  

Assignment 2 – testing

● I have supplied 8 testcases
● ”Slow”, simulates worst case for BST

– 10 thousand node insertions

– 50, 100, 150 or 200 find operations

– Named 10k_50k_slow, 10k_100k_slow etc.

● ”Better”, simulates random insertion
– Same number of and insertions and finds

– Named 10k_50k_better, 10k_100k_better 
etc.



  

Assignment 2 – evaluation

● To be able to evaluate your solutions, your 
programs will have to produce some output

● For each find operation, print the number of 
nodes you looked at to get there.

– Including the target node itself

– By the way, this can also be used as a 
measure of speed

– Would probably be a good idea to return 
this value from the find operation.

● Well explained on the website



  

Assignment 2 – questions

● Should our BST have any functions for 
balancing itself?

– No, not this time.
● It is even IMPORTANT that you do not!

● How would we do that?
– Don't

● But go to Chris' lecture tomorrow
– He will talk about AVL trees. Something not 

found in the book!



  

Assignment 2 – questions

● ”How should we be handling inputs less 
than 1?”

– Expect testcases to be similar to the ones I 
have supplied

● Ergo: input size > 1

● ”Is it OK to measure the performance of 
data structures in terms of milliseconds 
instead of seconds?”

– Yes



  

Assignment 2 – questions

● ”Do we need to submit circle list and bst 
with their respective main files?”

– The assignment description says exactly 
what to turn in.

● A LinkedList implementation
● A BST implementation
● A small discussion

– Elaborated on the website.



  

Assignment 2 – questions

● ”Since I have a computer running on 4 
cores, even the worst case with linked-list 
gives me 0 seconds”

– This is of course possible

– I ”only” have a Core 2 Duo with 2GHz.

– I have uploaded a tool so you can create 
extra testcases

● Check the website



  

Assignment 2

● My results
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Assignment 2

● My results

50k 100k 150k 200k

0

1

2

3

4

5

6

7

8

9

10

Average case (better)

Binary 
Search 
Tree
Linked List



  

Thank you

Questions?
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