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Welcome back!

Data structures lab – week 5
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Week 4 recap

● More hints
● Comparing LL and BST
● Assignment 2 Q & A

– Did you all finish yet?
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Week 4 class evaluation

● We're down to only 6 respondents :-(
– Probably midterm madness

● Selected comments (slightly edited):
– ”A subscription option for the blog … for those of us... 

that would sooner check [email] than the website

– ”More examples of actual C++ code”

– ”I already worked with C++ so a lot of the stuff is old 
news to me”

● Shows the diversity of a class!
● Full survey results found online
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Outline

● Announcements
– The blog!

● Balanced trees
– Something new and exciting

– Analysis

– Pretty graphs

● Assignment 3
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Hints for success

● Hint number 1: Read the assignment

● Hint number 2: Look at your code

● Hint number 3: Comply with standards

● Hint number 4: Use large test cases

● Hint number 5: Use the terminal

● Hint number 6: Use IX and g++

● Hint number 7: Fear the NULL

● Hint number 8: Use a debugger

● Hint number 9: Start earlier
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Hints for success

● This is almost ten!
● We need a tenth.

– Right? Yes

– Thou shalt send me suggestions either on 
blog on email.

– I will make a poll.

– Thou shalt vote for your favorite before 
next class.

● By the way, have you checked out the blog?
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Wake-up quiz

● Which of the following trees is a binary 
search tree?
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Wake-up quiz

● Which of the following trees is a binary 
search tree?

● The left one is
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Balanced trees

● BST is not balanced.
– We've been talking a lot about this

● BST is pretty good in the average case
● We still want balance though

– To guarantee O(lg n) height of our trees

● Cormen et. al. has the answer.
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Balanced trees

● Red-black trees!
● Invented by Bayer, 1972, based on B-

trees.
● Guibas-Sedgewick, 1978, analysed and 

invented the red-black color idea.
– We'll get back to Sedgewick later



11

Red-black trees

● Properties:
– Every node is either red or black

– The root is black

– Every leaf is black
● In Cormen, every leaf is a special NIL 

node.

– If a node is red, both children are black

– All simple paths from a node to descendant 
leaves contain the same number of black 
nodes.
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Red-black trees

● Here is a BST

● Could this be turned into a red-black tree?
– … If I'm allowed to color the nodes?
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Red-black trees

● Balancing happens at insertion
– And deletion

● All other operations are the same as for 
BST

– Yes, this is pretty clever.

● New question: Can we balance efficiently?
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Red-black trees

● Insert operation outline for node x:
– Insert x into tree

● Using the standard BST method

– Color x red

– Fix the tree to comply with properties

● Concepts:
– x's Uncle (U) is x's parent's sibling

– x's Grandparent (G) is x's parent's parent
● Just like real life right?
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Red-black trees

● Parent and uncle are red
● Change them to black
● Change their parent to red

● Apply recursively, so root ends up black
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Red-black trees

● Parent is red, uncle is black
● x is right child of P, P is left child of G
● Rotate-Left at P
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Red-black trees

● Parent is red, uncle is black
● x is left child of P, P is left child of G
● Rotate-Right at G
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Red-black trees

● And then there's the opposite cases
● I won't go into detail with those
● Cormen et. al. is very detailed

– Very!

● Implementing red-black trees can be 
difficult!

● Robert Sedgewick: ”Can we do better?”
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Wake-up quiz – RB trees

● Is this a red-black tree?
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Wake-up quiz – RB trees

● Is this a red-black tree?

● Yes!
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Balanced trees – something new

● Robert Sedgewick, Fall 2007:
– ”Can we do better?”

● Introduced the left-leaning red-black tree.
– Require red nodes to ”lean” left

● What does left-leaning mean?
– Good to know 2-3-4 trees

– I'll give you a quick tour.
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Left-leaning RB tree

● Slides found at:
http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf

● I will briefly go through some of them.
● Used with kind permission by Robert 

Sedgewick himself.

http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf
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Left-leaning RB trees

● Claims to be faster than normal RB trees.
● How do we test the claim?

– Look at the analysis

– Try it out!
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LLRB analysis

● We want to test LLRB trees.
● We want to compare the find running time 

for LLRB with RB
● We want to compare the insert running 

time for LLRB with RB
● Let's throw a normal BST in there as well
● We hope we can see a difference

– This is our hypothesis
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LLRB analysis – recipe

1) Implement BST (already done)

2) Implement RB tree (from Cormen et. al.)

3) Implement LLRB (from Sedgewick)

4) Run tests

5) Look at results

6) Conclude
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Implementation – general

● Add color boolean 
to each node

– Red is true

– Black is false

● Add a special NIL 
node

const bool RED = true;
const bool BLACK = false;

struct RBNode {
   int key;
   bool color;
   RBNode * left;
   RBNode * right;
   RBNode * p;
   RBNode();
   RBNode(int,bool);
} nilNode;



27

Implementation – general

● Already have basic algorithms in place
● Inorder tree walk is good for seeing if your 

tree is correct.
void inorderTreeWalk(RBNode * x) {
  if (x != &nilNode) {
    inorderTreeWalk(x->left);
    cout << x->key << endl;
    inorderTreeWalk(x->right);
  }
}
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Implementation – general

● Tree search, also used by all three
RBNode* iterativeTreeSearch(RBNode * x, int k) 
{
  while (x != &nilNode && k != x->key) {
    if (k < x->key)
      x = x->left;
    else
      x = x->right;
  }
  return x;
}
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(2) RB implementation

● Look in Cormen, chapter 13
● Implement rotations
● Implement insert

– Basically change the BST insert a bit

● Implement insert-fixup
– This is the tricky part!
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(2) RB implementation
void RBLeftRotate(RBTree& rbbst, RBNode& x) {

RBNode * y;
y = x.right;
x.right = y->left;
if (y->left != &nilNode)

y->left->p = &x;
y->p = x.p;
if (x.p == &nilNode)

rbbst.root = y;
else if (&x == x.p->left)

x.p->left = y;
else

x.p->right = y;
y->left = &x;
x.p = y;

}
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(2) RB implementation
void RBRightRotate(RBTree& rbbst, RBNode& y) {

RBNode * x;
x = y.left;
y.left = x->right;
if (x->right != &nilNode)

x->right->p = &y;
x->p = y.p;
if (y.p == &nilNode)

rbbst.root = x;
else if (&y == y.p->left)

y.p->left = x;
else

y.p->right = x;
x->right = &y;
y.p = x;

}
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(2) RB implementation

● Insert, 22 lines of code
– Without comments

● Insert-fixup, 40+ lines of code
– Without comments

● Maybe it doesn't scare you away
– But there sure are many places where 

things can go wrong



33

(3) LLRB implementation

● Left/right rotate: 9 lines each
● Color flip: 6 lines
● Insert, total 23 lines.

– Sure is a lot smaller

– Easier to understand
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(4) Run tests

● 1-10 million inserts
– To test O(lg n) insert claim

● 1 million finds
– To test O(lg n) height claim.

● Is BST, RB or LLRB the fastest?
– What do you think?

● The classroom should be filled with 
anticipation by now.
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(5) Results
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(5) Results
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(5) Results
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(6) Conclusion

● Normal BST is not so bad!
– Random insertions are good.

– Implementation is simple.

– In worst case, 1 mil. Insert, 1. mil. Finds
● Very bad!

– I stopped the process after 22 minutes.

● RB is the best all around.
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(6) Conclusion

● Where is the promised land?
● Why is the LLRB not the best?
● Several possible explanations:

– Recursive
● Programs like iteration.

– Bad implementation by me?
● I hope not.

– Not enough testcases
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Assignment 3 – part 1

● Implement a left-leaning red-black tree.
– Support insert

– Do not bother about deletion

– Support find
● You should already have this from A2.

● Use any language you like
– Except Java!

● Testcase generator from A2 works fine for 
testing
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Assignment 3 – part 2

● Try to finish part 1 by Thursday of week 6
– But don't turn it in yet

– The final due date is February 18, 2010

● Part 2 is not finalized.
– Coming soon
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Thank you

Questions?
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