
1

Welcome back!

Data structures lab – week 5

2

Week 4 recap

● More hints
● Comparing LL and BST
● Assignment 2 Q & A

– Did you all finish yet?

3

Week 4 class evaluation

● We're down to only 6 respondents :-(
– Probably midterm madness

● Selected comments (slightly edited):
– ”A subscription option for the blog … for those of us...

that would sooner check [email] than the website

– ”More examples of actual C++ code”

– ”I already worked with C++ so a lot of the stuff is old
news to me”

● Shows the diversity of a class!
● Full survey results found online

4

Outline

● Announcements
– The blog!

● Balanced trees
– Something new and exciting

– Analysis

– Pretty graphs

● Assignment 3

5

Hints for success

● Hint number 1: Read the assignment

● Hint number 2: Look at your code

● Hint number 3: Comply with standards

● Hint number 4: Use large test cases

● Hint number 5: Use the terminal

● Hint number 6: Use IX and g++

● Hint number 7: Fear the NULL

● Hint number 8: Use a debugger

● Hint number 9: Start earlier

6

Hints for success

● This is almost ten!
● We need a tenth.

– Right? Yes

– Thou shalt send me suggestions either on
blog on email.

– I will make a poll.

– Thou shalt vote for your favorite before
next class.

● By the way, have you checked out the blog?

7

Wake-up quiz

● Which of the following trees is a binary
search tree?

8

Wake-up quiz

● Which of the following trees is a binary
search tree?

● The left one is

9

Balanced trees

● BST is not balanced.
– We've been talking a lot about this

● BST is pretty good in the average case
● We still want balance though

– To guarantee O(lg n) height of our trees

● Cormen et. al. has the answer.

10

Balanced trees

● Red-black trees!
● Invented by Bayer, 1972, based on B-

trees.
● Guibas-Sedgewick, 1978, analysed and

invented the red-black color idea.
– We'll get back to Sedgewick later

11

Red-black trees

● Properties:
– Every node is either red or black

– The root is black

– Every leaf is black
● In Cormen, every leaf is a special NIL

node.

– If a node is red, both children are black

– All simple paths from a node to descendant
leaves contain the same number of black
nodes.

12

Red-black trees

● Here is a BST

● Could this be turned into a red-black tree?
– … If I'm allowed to color the nodes?

13

Red-black trees

● Balancing happens at insertion
– And deletion

● All other operations are the same as for
BST

– Yes, this is pretty clever.

● New question: Can we balance efficiently?

14

Red-black trees

● Insert operation outline for node x:
– Insert x into tree

● Using the standard BST method

– Color x red

– Fix the tree to comply with properties

● Concepts:
– x's Uncle (U) is x's parent's sibling

– x's Grandparent (G) is x's parent's parent
● Just like real life right?

15

Red-black trees

● Parent and uncle are red
● Change them to black
● Change their parent to red

● Apply recursively, so root ends up black

16

Red-black trees

● Parent is red, uncle is black
● x is right child of P, P is left child of G
● Rotate-Left at P

17

Red-black trees

● Parent is red, uncle is black
● x is left child of P, P is left child of G
● Rotate-Right at G

18

Red-black trees

● And then there's the opposite cases
● I won't go into detail with those
● Cormen et. al. is very detailed

– Very!

● Implementing red-black trees can be
difficult!

● Robert Sedgewick: ”Can we do better?”

19

Wake-up quiz – RB trees

● Is this a red-black tree?

20

Wake-up quiz – RB trees

● Is this a red-black tree?

● Yes!

21

Balanced trees – something new

● Robert Sedgewick, Fall 2007:
– ”Can we do better?”

● Introduced the left-leaning red-black tree.
– Require red nodes to ”lean” left

● What does left-leaning mean?
– Good to know 2-3-4 trees

– I'll give you a quick tour.

22

Left-leaning RB tree

● Slides found at:
http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf

● I will briefly go through some of them.
● Used with kind permission by Robert

Sedgewick himself.

http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf

23

Left-leaning RB trees

● Claims to be faster than normal RB trees.
● How do we test the claim?

– Look at the analysis

– Try it out!

24

LLRB analysis

● We want to test LLRB trees.
● We want to compare the find running time

for LLRB with RB
● We want to compare the insert running

time for LLRB with RB
● Let's throw a normal BST in there as well
● We hope we can see a difference

– This is our hypothesis

25

LLRB analysis – recipe

1) Implement BST (already done)

2) Implement RB tree (from Cormen et. al.)

3) Implement LLRB (from Sedgewick)

4) Run tests

5) Look at results

6) Conclude

26

Implementation – general

● Add color boolean
to each node

– Red is true

– Black is false

● Add a special NIL
node

const bool RED = true;
const bool BLACK = false;

struct RBNode {
 int key;
 bool color;
 RBNode * left;
 RBNode * right;
 RBNode * p;
 RBNode();
 RBNode(int,bool);
} nilNode;

27

Implementation – general

● Already have basic algorithms in place
● Inorder tree walk is good for seeing if your

tree is correct.
void inorderTreeWalk(RBNode * x) {
 if (x != &nilNode) {
 inorderTreeWalk(x->left);
 cout << x->key << endl;
 inorderTreeWalk(x->right);
 }
}

28

Implementation – general

● Tree search, also used by all three
RBNode* iterativeTreeSearch(RBNode * x, int k)
{
 while (x != &nilNode && k != x->key) {
 if (k < x->key)
 x = x->left;
 else
 x = x->right;
 }
 return x;
}

29

(2) RB implementation

● Look in Cormen, chapter 13
● Implement rotations
● Implement insert

– Basically change the BST insert a bit

● Implement insert-fixup
– This is the tricky part!

30

(2) RB implementation
void RBLeftRotate(RBTree& rbbst, RBNode& x) {

RBNode * y;
y = x.right;
x.right = y->left;
if (y->left != &nilNode)

y->left->p = &x;
y->p = x.p;
if (x.p == &nilNode)

rbbst.root = y;
else if (&x == x.p->left)

x.p->left = y;
else

x.p->right = y;
y->left = &x;
x.p = y;

}

31

(2) RB implementation
void RBRightRotate(RBTree& rbbst, RBNode& y) {

RBNode * x;
x = y.left;
y.left = x->right;
if (x->right != &nilNode)

x->right->p = &y;
x->p = y.p;
if (y.p == &nilNode)

rbbst.root = x;
else if (&y == y.p->left)

y.p->left = x;
else

y.p->right = x;
x->right = &y;
y.p = x;

}

32

(2) RB implementation

● Insert, 22 lines of code
– Without comments

● Insert-fixup, 40+ lines of code
– Without comments

● Maybe it doesn't scare you away
– But there sure are many places where

things can go wrong

33

(3) LLRB implementation

● Left/right rotate: 9 lines each
● Color flip: 6 lines
● Insert, total 23 lines.

– Sure is a lot smaller

– Easier to understand

34

(4) Run tests

● 1-10 million inserts
– To test O(lg n) insert claim

● 1 million finds
– To test O(lg n) height claim.

● Is BST, RB or LLRB the fastest?
– What do you think?

● The classroom should be filled with
anticipation by now.

35

(5) Results

1000k 2000k 3000k 4000k 5000k 6000k 7000k 8000k 9000k 10000k

0

5

10

15

20

25

30

35

40

45

Insert and find

BST
RB Tree
LL RB Tree

Number of inserts

S
e

co
n

d
s

36

(5) Results

1000k 2000k 3000k 4000k 5000k 6000k 7000k 8000k 9000k 10000k

0

5

10

15

20

25

30

35

40

45

Insert only

BST
RB Tree
LL RB Tree

Number of inserts

S
e

co
n

d
s

37

(5) Results

1000k 2000k 3000k 4000k 5000k 6000k 7000k 8000k 9000k 10000k

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Find only

BST
RB Tree
LL RB Tree

Number of inserts

S
e

co
n

d
s

38

(6) Conclusion

● Normal BST is not so bad!
– Random insertions are good.

– Implementation is simple.

– In worst case, 1 mil. Insert, 1. mil. Finds
● Very bad!

– I stopped the process after 22 minutes.

● RB is the best all around.

39

(6) Conclusion

● Where is the promised land?
● Why is the LLRB not the best?
● Several possible explanations:

– Recursive
● Programs like iteration.

– Bad implementation by me?
● I hope not.

– Not enough testcases

40

Assignment 3 – part 1

● Implement a left-leaning red-black tree.
– Support insert

– Do not bother about deletion

– Support find
● You should already have this from A2.

● Use any language you like
– Except Java!

● Testcase generator from A2 works fine for
testing

41

Assignment 3 – part 2

● Try to finish part 1 by Thursday of week 6
– But don't turn it in yet

– The final due date is February 18, 2010

● Part 2 is not finalized.
– Coming soon

42

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

