
1

Welcome back!

Data structures lab – week 6



2

Wake-up quiz – LLRB versus RB

● What did our last week results about left-
leaning red-black trees show us? 

a) They have less code

b) They are easier to understand

c) They are a bit slower than textbook RB

d) All of the above



3

Wake-up quiz – LLRB versus RB

● What did our last week results about left-
leaning red-black trees show us? 

a) They have less code

b) They are easier to understand

c) They are a bit slower than textbook RB

d) All of the above

● d is the correct answer
– Recursion is often shorter, more clear and 

a bit slower.



4

Week 5 recap

● Balanced trees
● Left-leaning red-black trees

– Background for red-black trees
● 2-3-4 trees

● Assignment 3, part 1



5

Week 5 class evaluation

● Midterm survey
● Done in class, only 23 were there!

– Again, probably midterm madness

– But still disappointing

● Overall ”ok” in speed and difficulty
● Content is interesting – good!



6

Week 5 class evaluation

● Comments (slightly edited):
– ”It's early”

● Can't do anything about that, unfortunately
– Drink coffee

– ”Motivate the material”

– ”Double check content for accuracy”

– ”Wake-up quizzes are good”

– ”Good class”, ”good stuff”, ”good work”
● Thanks



7

Outline

● Assignment 2 gotchas.
● Balanced trees

– Revisited

● Assignment 3, part 2



8

Hints for success

● Hint number 1: Read the assignment

● Hint number 2: Look at your code

● Hint number 3: Comply with standards

● Hint number 4: Use large test cases

● Hint number 5: Use the terminal

● Hint number 6: Use IX and g++

● Hint number 7: Fear the NULL

● Hint number 8: Use a debugger

● Hint number 9: Start earlier



9

Hints for success

● Hint number 10
● Still to be determined

– Don't send any more suggestions

● I will make a poll today
– Go and vote!

● You do not need to register for this one

● They are all good suggestions!
– Got the participation on the blog going

● (even if I had to reward you for it :-)



10

Hint number 10

● Just a few of them:
– Read the textbook

– Organize your code

– Use Google

– Go to office hours

– Comment well

– Write object-oriented in C++

– Hang out in Deschutes 100

● See them all on the blog!



11

Assignment 2 gotchas

● Being too fancy is not always good if you 
cannot finish on time

– Start with the basics
● e.g. remove was not required for A2.

– So don't spend time implementing it unless 
you have the time.

● Remember the hints
– e.g. “look at your code”

● Comment out code used for timing.



12

Assignment 2 gotchas

● Be aware that I do check for plagiarism
– I use a special tool to check your 

submissions.

– There is a borderline case for this 
assignment.

– Do not copy from each other!

– Study groups are fine
● Discuss a solution outline, not the solution 

itself.



13

Assignment 2 gotchas

● “What to turn in”:

1. Linked List implementation

2. BST implementation

3. Small discussion

● This was apparently ambiguous
– I'm sorry for that? Not really.

● If in doubt, ask!



14

Red-black trees – again

● Properties:
– Every node is either red or black

– The root is black

– Every leaf is black
● In Cormen, every leaf is a special NIL 

node.

– If a node is red, both children are black

– All simple paths from a node to descendant 
leaves contain the same number of black 
nodes.



15

Red-black trees – again

● Balancing happens at insertion
– And deletion

● All other operations are the same as for 
BST

● Red-black trees guarantee:
● O(lg n) insertion
● O(lg n) deletion
● O(lg n) search



16

Left-leaning red-black trees

● Something new and exciting (2007)
● Same performance as red-black trees
● Requires all red nodes to be ”left-leaning”
● Simpler to implement

– Especially because of recursion
● Remember the first wake-up quiz?



17

Wake-up quiz – LLRB trees

● Is this a left-leaning red-black tree?



18

Wake-up quiz – LLRB trees

● Is this a left-leaning red-black tree?

● No... why?



19

RB versus LLRB

● Insert operation:
– ~60 versus ~20 lines of code

● Rotations:
– ~15 versus ~10 lines of code

● That's why you are implementing a LLRB
– Also because it is new and exciting



20

RB versus LLRB

1000k 2000k 3000k 4000k 5000k 6000k 7000k 8000k 9000k 10000k

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Find only

BST
RB Tree
LL RB Tree

Number of inserts

S
e

co
n

d
s

● Last week:

● LLRB a bit slower than RB



21

RB versus LLRB

● Me to Robert Sedgewick (edited):
– ”My initial findings are that the LLRB trees 

actually are slower than "normal" RB 
trees”

● Response (edited):
– ”If you're finding a significant difference in 

tree height, I'd be very surprised.”

– ”For most applications the cost of insert() is 
insignificant compared to search()”



22

RB versus LLRB

● Find operation is

T = O(h)

● We hope find (if we believe RS)

h
RB

 = h
LLRB

 = c*lg(n)

● Or at least just an insignificant difference 
between them.



23

RB versus LLRB

● New results are in!
● 405 testcases

– Why not just 400?
● Well, should have been 500

– But I got tired of waiting for the generator

● Increases of 10,000 (i.e. max 4,050,000)
● 1,000,000 find operations for each case.
● Only measure the find operations.

– Any difference between RB and LLRB?



24

RB versus LLRB

● A reminder:
– Both trees use the SAME find function.

– Therefore, the results actually show the 
difference in average tree height!

● We cannot use the recursive excuse for 
bad LLRB performance anymore

● A disclaimer:
– I use my computer for other things than 

running tests
● This might explain fluctuations.



25

RB versus LLRB – results

0

0.5

1

1.5

2

2.5

3

1 millions finds -- "better"

RB Tree
LL RB Tree

Number elements, n

S
e

co
n

d
s



26

RB versus LLRB – results

0

0.5

1

1.5

2

2.5

3

1 million finds -- "worst"

RB Tree
LL RB Tree

Number of element, n

S
e

co
n

d
s



27

RB versus LLRB – conclusion

● Tree height is slightly larger for LLRB
– Not significant though

– Is outweighed by easier implementation

● Tree height seems to be logarithmically 
growing

h = c*lg(n)

● Alright now, I think we're convinced.
– Let's move on. 



28

Assignment 3 – part 1

● Implement a left-leaning red-black tree.
– Support insert

– Do not bother about deletion

– Support find
● You should already have this from A2.

● Use any language you like
– Except Java!

● Testcase generator from A2 works fine for 
testing



29

Assignment 3 – HELP

● Did anyone implement anything yet?
● Once again, I advertise for HELP
● This Monday, 5 pm, Deschutes 100
● Also, office hours.
● By the way, did anyone notice anything 

special about the HELP acronym yet?



30

Assignment 3 – HELP

● Did anyone implement anything yet?
● Once again, I advertise for HELP
● This Monday, 5 pm, Deschutes 100
● Also, office hours.
● By the way, did anyone notice anything 

special about the HELP acronym yet?
– It is recursive!

– HELP Enhances the Learning Process



31

Assignment 3 – part 2

● A little bit on the board...
● … and then over to the website



32

Assignment 3 – part 2

● So we have to deal with order statistics
● CLRS:

“the ith order statistic of a set of n elements 
... is simply the element in the set with 
the ith smallest key.

● S = {5, 3, 6, 8, 2}
● What is the 4th order statistic (OS) in S?



33

Order statistics

● So we have to deal with order statistics
● CLRS:

“the ith order statistic of a set of n elements 
... is simply the element in the set with 
the ith smallest key.

● S = {5, 3, 6, 8, 2}
● What is the 4th order statistic (OS) in S?

– 6... because it is the 4th smallest number

– How did you do this?



34

Order statistics – method

● S = {5, 3, 6, 8, 2}
● We want to find 4th OS.

– Sort?

– Count?

– Use magic powers?

● S' = {2, 3, 5, 6, 8}
– This is easier, right?

– We just count to the 4th number.



35

Wakeup quiz – Order statistics

● The outline we have just sketched for 
finding the ith order statistic has a running 
time of:

a) O(1)

b) O(lg n)

c) O(n)

d) O(n lg n)

e) O(n^2)



36

Wakeup quiz – Order statistics

● The outline we have just sketched for 
finding the ith order statistic has a running 
time of:

a) O(1)

b) O(lg n)

c) O(n)

d) O(n lg n)

e) O(n^2)

● The correct answer is d.



37

Order statistics – method

● Sorting takes Ω(n*lg(n))
● Going through the list takes O(n)

– m OS queries thus take O(m*n)

– If m is close to n the overall running time is 
O(n^2)!

● Can we do better than this?
– Yes



38

Augmenting red-black trees

● “Some engineering situations … require a 
dash of creativity”

● “...often, it will suffice to augment a 
textbook data structure”

● We will augment a red-black tree
– Making an order-statistics tree



39

Order statistics tree

● Add data to a node called size
● For a node x:
● x.size = x.left.size + x.right.size + 1
● Let's do this on the board!

– For the seven dwarves



40

Order statistics tree

● Finding the rank (ith OS) for a node x.
● Outline:

– We start at x

– Go up the tree to the root
● i.e. maximum h steps

– Along the way we calculate the size of all 
nodes preceding x.

● Since our tree has height h = lg n, OS-rank 
runs in O(lg n) time.



41

OS – finding the rank

● Finding the rank (ith OS)

OS-rank(T,x)

r = x.left.size+1

y = x

While (y != T.root)
If (y == y.p.right)

r = r + y.p.left.size + 1

y = y.p

return r



42

Assignment 3

● Step 1: Implement the LLRB
– Left/right rotate, color flip, insert

● Step 2: Augment the LLRB with dynamic 
order statistics.

– size for each node
● Modifications to insert and rotation

– OS-rank implementation

● Step 3: Solve the problem
– name for each node



43

Assignment 3 – tips

● Reading in a number and name
int key; string name;

cin >> key >> skipws >> name;

● Finding the correct rank
– High scores should have highest rank

– Use textbook OS-rank

– Return (n + 1) – OS-rank
● Or reverse the tree on insertion



44

Thank you

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

