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Welcome back!

Data structures lab – week 6
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Wake-up quiz – LLRB versus RB

● What did our last week results about left-
leaning red-black trees show us? 

a) They have less code

b) They are easier to understand

c) They are a bit slower than textbook RB

d) All of the above
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Wake-up quiz – LLRB versus RB

● What did our last week results about left-
leaning red-black trees show us? 

a) They have less code

b) They are easier to understand

c) They are a bit slower than textbook RB

d) All of the above

● d is the correct answer
– Recursion is often shorter, more clear and 

a bit slower.
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Week 5 recap

● Balanced trees
● Left-leaning red-black trees

– Background for red-black trees
● 2-3-4 trees

● Assignment 3, part 1
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Week 5 class evaluation

● Midterm survey
● Done in class, only 23 were there!

– Again, probably midterm madness

– But still disappointing

● Overall ”ok” in speed and difficulty
● Content is interesting – good!
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Week 5 class evaluation

● Comments (slightly edited):
– ”It's early”

● Can't do anything about that, unfortunately
– Drink coffee

– ”Motivate the material”

– ”Double check content for accuracy”

– ”Wake-up quizzes are good”

– ”Good class”, ”good stuff”, ”good work”
● Thanks
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Outline

● Assignment 2 gotchas.
● Balanced trees

– Revisited

● Assignment 3, part 2
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Hints for success

● Hint number 1: Read the assignment

● Hint number 2: Look at your code

● Hint number 3: Comply with standards

● Hint number 4: Use large test cases

● Hint number 5: Use the terminal

● Hint number 6: Use IX and g++

● Hint number 7: Fear the NULL

● Hint number 8: Use a debugger

● Hint number 9: Start earlier
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Hints for success

● Hint number 10
● Still to be determined

– Don't send any more suggestions

● I will make a poll today
– Go and vote!

● You do not need to register for this one

● They are all good suggestions!
– Got the participation on the blog going

● (even if I had to reward you for it :-)
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Hint number 10

● Just a few of them:
– Read the textbook

– Organize your code

– Use Google

– Go to office hours

– Comment well

– Write object-oriented in C++

– Hang out in Deschutes 100

● See them all on the blog!
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Assignment 2 gotchas

● Being too fancy is not always good if you 
cannot finish on time

– Start with the basics
● e.g. remove was not required for A2.

– So don't spend time implementing it unless 
you have the time.

● Remember the hints
– e.g. “look at your code”

● Comment out code used for timing.
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Assignment 2 gotchas

● Be aware that I do check for plagiarism
– I use a special tool to check your 

submissions.

– There is a borderline case for this 
assignment.

– Do not copy from each other!

– Study groups are fine
● Discuss a solution outline, not the solution 

itself.
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Assignment 2 gotchas

● “What to turn in”:

1. Linked List implementation

2. BST implementation

3. Small discussion

● This was apparently ambiguous
– I'm sorry for that? Not really.

● If in doubt, ask!
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Red-black trees – again

● Properties:
– Every node is either red or black

– The root is black

– Every leaf is black
● In Cormen, every leaf is a special NIL 

node.

– If a node is red, both children are black

– All simple paths from a node to descendant 
leaves contain the same number of black 
nodes.
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Red-black trees – again

● Balancing happens at insertion
– And deletion

● All other operations are the same as for 
BST

● Red-black trees guarantee:
● O(lg n) insertion
● O(lg n) deletion
● O(lg n) search



16

Left-leaning red-black trees

● Something new and exciting (2007)
● Same performance as red-black trees
● Requires all red nodes to be ”left-leaning”
● Simpler to implement

– Especially because of recursion
● Remember the first wake-up quiz?
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Wake-up quiz – LLRB trees

● Is this a left-leaning red-black tree?
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Wake-up quiz – LLRB trees

● Is this a left-leaning red-black tree?

● No... why?
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RB versus LLRB

● Insert operation:
– ~60 versus ~20 lines of code

● Rotations:
– ~15 versus ~10 lines of code

● That's why you are implementing a LLRB
– Also because it is new and exciting
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RB versus LLRB
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● Last week:

● LLRB a bit slower than RB



21

RB versus LLRB

● Me to Robert Sedgewick (edited):
– ”My initial findings are that the LLRB trees 

actually are slower than "normal" RB 
trees”

● Response (edited):
– ”If you're finding a significant difference in 

tree height, I'd be very surprised.”

– ”For most applications the cost of insert() is 
insignificant compared to search()”
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RB versus LLRB

● Find operation is

T = O(h)

● We hope find (if we believe RS)

h
RB

 = h
LLRB

 = c*lg(n)

● Or at least just an insignificant difference 
between them.
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RB versus LLRB

● New results are in!
● 405 testcases

– Why not just 400?
● Well, should have been 500

– But I got tired of waiting for the generator

● Increases of 10,000 (i.e. max 4,050,000)
● 1,000,000 find operations for each case.
● Only measure the find operations.

– Any difference between RB and LLRB?
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RB versus LLRB

● A reminder:
– Both trees use the SAME find function.

– Therefore, the results actually show the 
difference in average tree height!

● We cannot use the recursive excuse for 
bad LLRB performance anymore

● A disclaimer:
– I use my computer for other things than 

running tests
● This might explain fluctuations.
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RB versus LLRB – results
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RB versus LLRB – results
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RB versus LLRB – conclusion

● Tree height is slightly larger for LLRB
– Not significant though

– Is outweighed by easier implementation

● Tree height seems to be logarithmically 
growing

h = c*lg(n)

● Alright now, I think we're convinced.
– Let's move on. 
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Assignment 3 – part 1

● Implement a left-leaning red-black tree.
– Support insert

– Do not bother about deletion

– Support find
● You should already have this from A2.

● Use any language you like
– Except Java!

● Testcase generator from A2 works fine for 
testing
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Assignment 3 – HELP

● Did anyone implement anything yet?
● Once again, I advertise for HELP
● This Monday, 5 pm, Deschutes 100
● Also, office hours.
● By the way, did anyone notice anything 

special about the HELP acronym yet?
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Assignment 3 – HELP

● Did anyone implement anything yet?
● Once again, I advertise for HELP
● This Monday, 5 pm, Deschutes 100
● Also, office hours.
● By the way, did anyone notice anything 

special about the HELP acronym yet?
– It is recursive!

– HELP Enhances the Learning Process
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Assignment 3 – part 2

● A little bit on the board...
● … and then over to the website
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Assignment 3 – part 2

● So we have to deal with order statistics
● CLRS:

“the ith order statistic of a set of n elements 
... is simply the element in the set with 
the ith smallest key.

● S = {5, 3, 6, 8, 2}
● What is the 4th order statistic (OS) in S?
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Order statistics

● So we have to deal with order statistics
● CLRS:

“the ith order statistic of a set of n elements 
... is simply the element in the set with 
the ith smallest key.

● S = {5, 3, 6, 8, 2}
● What is the 4th order statistic (OS) in S?

– 6... because it is the 4th smallest number

– How did you do this?



34

Order statistics – method

● S = {5, 3, 6, 8, 2}
● We want to find 4th OS.

– Sort?

– Count?

– Use magic powers?

● S' = {2, 3, 5, 6, 8}
– This is easier, right?

– We just count to the 4th number.
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Wakeup quiz – Order statistics

● The outline we have just sketched for 
finding the ith order statistic has a running 
time of:

a) O(1)

b) O(lg n)

c) O(n)

d) O(n lg n)

e) O(n^2)



36

Wakeup quiz – Order statistics

● The outline we have just sketched for 
finding the ith order statistic has a running 
time of:

a) O(1)

b) O(lg n)

c) O(n)

d) O(n lg n)

e) O(n^2)

● The correct answer is d.
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Order statistics – method

● Sorting takes Ω(n*lg(n))
● Going through the list takes O(n)

– m OS queries thus take O(m*n)

– If m is close to n the overall running time is 
O(n^2)!

● Can we do better than this?
– Yes
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Augmenting red-black trees

● “Some engineering situations … require a 
dash of creativity”

● “...often, it will suffice to augment a 
textbook data structure”

● We will augment a red-black tree
– Making an order-statistics tree



39

Order statistics tree

● Add data to a node called size
● For a node x:
● x.size = x.left.size + x.right.size + 1
● Let's do this on the board!

– For the seven dwarves



40

Order statistics tree

● Finding the rank (ith OS) for a node x.
● Outline:

– We start at x

– Go up the tree to the root
● i.e. maximum h steps

– Along the way we calculate the size of all 
nodes preceding x.

● Since our tree has height h = lg n, OS-rank 
runs in O(lg n) time.



41

OS – finding the rank

● Finding the rank (ith OS)

OS-rank(T,x)

r = x.left.size+1

y = x

While (y != T.root)
If (y == y.p.right)

r = r + y.p.left.size + 1

y = y.p

return r
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Assignment 3

● Step 1: Implement the LLRB
– Left/right rotate, color flip, insert

● Step 2: Augment the LLRB with dynamic 
order statistics.

– size for each node
● Modifications to insert and rotation

– OS-rank implementation

● Step 3: Solve the problem
– name for each node



43

Assignment 3 – tips

● Reading in a number and name
int key; string name;

cin >> key >> skipws >> name;

● Finding the correct rank
– High scores should have highest rank

– Use textbook OS-rank

– Return (n + 1) – OS-rank
● Or reverse the tree on insertion
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Thank you

Questions?
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