
1

Welcome back!

Data structures lab – week 7

2

Wake-up quiz – order statistics

● Finding the ith smallest key in a standard
red-black tree takes:

a) O(1)

b) O(lg n)

c) O(n)

d) O(n lg n)

3

Wake-up quiz – order statistics

● Finding the ith smallest key in a standard
red-black tree takes:

a) O(1)

b) O(lg n)

c) O(n) ← c is correct!

d) O(n lg n)

– The tree is “standard” – not augmented
with size of the sub trees.

● Sorry, I might have tricked you but this IS a
wake-up quiz :-)

4

Week 6 recap

● Augmenting data structures
● Order statistics
● Assignment 3, part 2

– Hope you're all near completion

5

Week 6 class evaluation

● Comments (slightly edited):
– ”Is there a possibility to have the class

meet in Deschutes 100? At least once.”
● Probably not

– Only 16 machines or so
– Room used by other students
– Go to HELP sessions.

● We talked about it at the beginning of the
term. “How a lab lecture works”

– “Too much review from last week.”
● Will do a slightly faster recap

6

Week 6 class evaluation

● Comments (slightly edited):
– “i know it's probably frustrating to have

such a weak turn out, but keep in mind
that the people that were there today
most likely were the same people that
were there last week and will be there
next week. ;)”

● Yes, I agree, I'm sorry if anyone was
offended.

● I did express disappointment on the blog
also.

7

Outline for today

● A final note on order statistics
● Heaps
● Priority queues
● Assignment 4, part 1
● Hint number 10

8

Order statistics tree

● Parent pointers are needed for the book's
(CLRS') solution to OS-rank

● LLRB insert does not maintain parent
pointers.

● You suggested to use top-down approach
● I showed the pseudocode for bottom-up

last week.
● I'll show you equivalent top-down approach

9

Top-down OS-rank

● Topdown-OSRank(T,x)

r = 0

y = T.root

while (y.key != x.key)
if (x.key > y.key)

r = r + y.left.size + 1

y = y.right

else
y = y.left;

r = r + y.left.size+1;

return r;

10

(Binary) Heaps

● “Nearly complete binary tree”
● Max-Heap-property

– For every node x, other than the root
● x.parent.key >= x.key

● Min-Heap-property
– For every node x, other than the root

● x.parent.key <= x.key

11

Max-heap

● This is a max-heap

● Notice that it is NOT a binary search tree

12

Min-heap

● This is a min-heap

● Notice that this, also, is NOT a binary
search tree

13

Heaps

● Often, we implement heaps with an array
● For an array A, we have:

– A.length
● Capacity of the heap/array

– A.heapsize
● Number of elements currently in the heap

– A[0] is the root of the tree
● Beware that the book uses 1-indexing

instead of 0-indexing like me.

14

Heaps

● Max-Heap-property
– For every node with index i, other than the

root
● A[parent(i)] >= A[i]

● Min-Heap-property
– For every node with index i, other than the

root
● A[parent(i)] <= A[i]

● Be careful, i != key

15

Array heap

● Array representation

● Why is this cool?

16

Array heap

● No pointers are needed!
● Parent(i)

return (i-1)/2 (round down)

● Left(i)

return 2i + 1

● Right(i)

return 2i + 2

17

Wake-up quiz – Heaps

● Consider the array:

A = (23, 17, 14, 6, 13, 10, 1, 5, 7, 12)

● Is A a max-heap?

18

Wake-up quiz – Heaps

● Consider the array:

A = (23, 17, 14, 6, 13, 10, 1, 5, 7, 12)

● Is A a max-heap?
– Nope, 7 is a right child of 6

– Drawing it is straightforward.

19

Maintaining heap property

● Max-Heapify(A, i)
– Make a heap rooted at index i

– A[i] “floats down” the tree

● Procedure
– Determine A[i], A[Left(i)], A[Right(i)]

– Swap A[i] with the largest number

– Recursively call Max-Heapify on the
subtree rooted at the largest number

– Stops when A[i] is the largest number

20

Building a heap

● Build-Max-Heap(A)
– Call Max-Heapify on every element down

to the first element.

– Start at middle of array
● Because everything after middle will

automatically be heapified

● Surprise: Runs in linear time O(n) !

21

Heaps – applications

● What can they be used for?
– Heap-sort

● In-place sorting
– With array representation

– Priority queues

22

Heapsort

● Heapsort(A)

Build-max-heap(A)

For i = A.length downto 2
Exchange A[i] with A[1]

A.heapsize = A.heapsize-1

Max-Heapify(A,1)

● Running time Θ(n lg n)

23

Heap data structure

// C++ heap
struct Heap {
int heapSize;
int length;
int * heap;
Heap(int h[], int l, int hs) {
heap = h;
length = l;
heapSize = hs;

}
};

24

Heap data structure

int parent(int i) {
return (i-1)/2;

}

int left(int i) {
return 2*i+1;

}

int right(int i) {
return 2*i+2;

}

25

Heapsort implementation

// C++ heapsort
void heapSort(Heap& A) {

buildMaxHeap(A);
for (int i = A.length-1; i >= 1; i--) {

int temp = A.heap[i];
A.heap[i] = A.heap[0];
A.heap[0] = temp;
A.heapSize--;
maxHeapify(A,0);

}
}

26

Priority queues

● A queue with prioritized elements
– In a way, a sorted queue

● Applications
– Scheduling

– Shortest path algorithms

– Sorting

27

Priority queues

● Important operations
● Insert(S,x)

– Inserts x into the set S

● Extract-min(S) / Extract-max(S)
– Extracts min/max element of S

● Min(S) / Max(S)
– Shows min/max element of S

28

Priority queues

● Implementation methods
– Sorting algorithm

– Binary search tree

– Heap

● A heap can also be used for sorting
– Heap sort

● A binary search tree can also be used for
sorting

– Inorder-tree walk

29

Priority queues

● Using a heap, all priority queue operations
run in O(lg n)

● Looking at the max/min only takes O(1)
– Compared to binary search tree O(lg n)

30

Assignment 4

● Implement a Binary Min-Heap
– Use any language

● Use it as a Min-priority-queue
● Accept unspecified number of elements

– Grow as necessary

● Do a number of Extract-min
● Find info on max-heap in CLRS, chapter 6

– Figure out min-heap by yourself.

31

Assignment 4

● Don't pre-count number of elements
● You can either:

– Maintain heap-property while inserting

– Build the heap after all elements are
inserted

– In both cases, grow as necessary
● Because you do not know how many nodes

to insert

32

Assignment 4

● I will supply some testcases that will each
have a “hidden” message.

● Along with your program, I would like you
to find and submit the hidden messages
from these testcases.

33

Hint number 10

● Hint number 10 is:
– Read the textbook (7 votes)

● Runners up:
– Use Google (6 votes)

– Ask questions (5 votes)

– Take breaks when you get stuck (4 votes)

34

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

