
1

Welcome back!

Data structures lab – week 9

2

Agenda for today

● Final word on assignment 4
● Sorting
● Divide and conquer
● How to speed things up
● Assignment 5

3

Wake-up quiz – assignment 4

● What is the key for first hidden message?

a) 1

b) 2

c) 3

d) 4

4

Wake-up quiz – checking progress

● What is the key for first hidden message?

a) 1

b) 2

c) 3

d) 4

● The correct answer is...
– I won't tell you if you don't know

● I'm just checking in

5

Assignment 4 – decrypting

● Remember, implement extract-min
– Do not use heapsort to do your job

● Tempting to do though
– One build-heap
– One heapsort
– Look at every (k+1)th word

● I basically already gave you all the code to
do this. So don't :-)

– Even your program from assignment 3
could be used to decrypt the messages

● But you need to learn about heaps.

6

Increasing array size

● Someone wondered how real-world
implementations deal with array increases.

– Java's ArrayList source code:
● newCapacity = (oldCapacity * 3)/2 + 1

– After that, it is native system calls (C code)
● System.copyarray()
● Makes a so-called “shallow” copy

– Does not create new objects,
only copied references

– According to online forums

7

Cryptographic systems

● Someone else wondered:
● “Isn't this called a symmetric cipher, since

both sender and recipient have the same
key? A public-key system would be a
more secure but it's more difficult to
implement.”

– Yes, it is a symmetric key cryptographic
system you are implementing.

– But a public-key system is not necessarily
more secure. They both have
advantages and disadvantages

● But let's not pick up that discussion now

8

Sorting

● Sorting is a fundamental operation
● Sorting is a sub-routine in many algorithms

– Shortest path

– Scheduling

– Computational geometry

– Many more

9

Sorting – complexity

● Sorting has a proved lower bound of
Ω(n lgn) for comparison sorts.

– Comparison meaning comparing elements

● If certain (true) assumptions are made, the
running time can be reduced to linear time
in some cases

– But read chapter 8 if you want to know
more about that

10

Sorting – implementation

● You have already implemented data
structures that support fast O(nlgn) sorting

– Heaps
● Heapsort

– Binary search trees (balanced)
● In-order-tree-walk

– Not usually used for sorting

11

Assignment 5

● Optional
– But only if you have more than 380 points!

● Due one week from now
● Implement quicksort
● Implement at least two other sorting

algorithms
● Compare performance

– Small write-up, ½-1 page, maybe with a
graph

12

Divide and conquer – the concept

● Divide: Split a problem into subproblems
● Conquer: Solve each subproblem

recursively
● Combine: Combine the solutions

13

Merge-sort

● Is a divide and conquer algorithm
● ϴ(n lgn) running time.
● Simple implementation

14

Merge-sort – algorithm

● For an array A with n elements
– Divide: Create subarrays of size n/2

● Until reaching a base case where the sub
arrays have length 1

– Conquer: Sort the subarrays recursively

– Combine: Merge the sorted subarrays

15

Merge-sort

16

Wake-up quiz – merge-sort

● For an array of size n, what is the running
time of the merge procedure?

a) O(1)

b) O(lg n)

c) O(n)

17

Wake-up quiz – merge-sort

● For an array of size n, what is the running
time of the merge procedure?

a) O(1)

b) O(lg n)

c) O(n)

● The correct answer is c
– That must mean that the array is divided

lg(n) times
● But you already knew that because of your

knowledge with binary search trees.

18

Quicksort

● Is a divide and conquer algorithm
● O(n lg n) average case running time but

O(n2) worst case running time
– Worst case rarely happens

● Widely used for sorting
– Java's Arrays.sort uses the quicksort

● But not from CLRS though

– Probably also C++ but I couldn't find
confirmation for this.

19

Quicksort – algorithm

● For an array A with n elements
– Divide: Partition A into two subarrays

around an index q such that
● Values of elements A[0..q-1] are less than

(or equal to) A[q]
● Values of elements A[q+1,n-1] are greater

than (or equal to) A[q]

– Conquer: Recursively sort the the
subarrays

– Combine: The subarrays are already
sorted so we do not need to combine.

20

Quicksort – partition

● 5 is the pivot element
● We maintain pointers to current element

less than and greater than 5

21

Wake-up quiz – quicksort

● For an array of size n, what is the running
time of the partition procedure?

a) O(1)

b) O(lg n)

c) O(n)

22

Wake-up quiz – quicksort

● For an array of size n, what is the running
time of the partition procedure?

a) O(1)

b) O(lg n)

c) O(n)

● The correct answer is c
– That must mean that we hope to split the

array lg(n) times
● Depends on the pivot
● Hints why we have O(n2) worst case

23

Sorting – comparison

● I implemented heapsort, mergesort and
quicksort in C++

– Similar to assignment 5

● I did not use fancy data structures
– Just plain old int arrays

● Input sizes from 100-10,000,000
● Which one do you think is the fastest?

24

Sorting – results

0
1000000

2000000
3000000

4000000
5000000

6000000
7000000

8000000
9000000

10000000

0

2

4

6

8

10

12

14

Sorting algorithms
in C++

Quicksort
Heapsort
Merge sort

25

Sorting – conclusion

● Quicksort is fastest
● But maybe we can do better than this?

– Without changing algorithms

26

Speeding things up

● Merge-sort and quicksort are cool
– They are both divide-and-conquer

– They have the same average case running
time

● They are fast

– They are easy to make faster
● In theory at least

● Let's talk concurrency a bit

27

Parallelism / Concurrency

● Parallel and concurrent is not the same
● Sun's “multithreaded programming guide”

– Parallelism:
● “A condition that arises when at least two

threads are executing simultaneously.”

– Concurrency
● “A condition that exists when at least two

threads are making progress. A more
generalized form of parallelism that can
include time-slicing as a form of virtual
parallelism”

28

Parallelism / Concurrency

● For two processes P1, P2:
– Parallelism:

● P1 and P2 can execute at the exact same
time

● E.g. executing P1 and P2 on separate
CPUs.

– Concurrency:
● P1 and P2 may overlap in their execution

– But not necessarily run in parallel
● E.g. executing P1 and P2 on the same

CPU (multitasking)

29

Concurrent programming

● Most modern programming languages
have support for concurrency

– Java: Thread in java.lang
● Easy to use
● I'll focus on this one

– C++: pthread
● Not so easy to use

– Python: Thread in threading
● I haven't played with it

30

Why concurrency?

● Operating systems would not work without
multitasking

● Large-scale database systems would not
work without concurrency

● Games would be unplayable without
concurrency

● Because it can speed things up

31

Concurrency in Java

● Threads of the class Thread can run
concurrently

– Not necessarily in parallel.

● Each thread runs a small subprogram that
is of the type Runnable

● Implement either interface Runnable or
extends class Thread.

32

Concurrency in Java – example

● A class that just prints 0 to 9
public class PrintTenNumbers
implements Runnable {
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println(i);
 }
 }
}

33

Concurrency in Java – example

● Making two threads that does this
public static void main(String[] args)
{
 Thread t1 = new Thread(new
PrintTenNumbers());
 Thread t2 = new Thread(new
PrintTenNumbers());
 t1.start(); // Starts the thread
 t2.start();
 t1.join(); // Wait for thread to stop
 t2.join();
}

34

Concurrency in Java

● Theoretically, the previous example should
print out 0 to 9 in any order, interleaving
between the threads

● In practice, this is not always the case
– Java does not allow you to control that you

want something executing on different
CPUs / cores, i.e. true parallelization

● So we can only assume that they do

35

Speeding things up – merge-sort

● Merge-sort recursively calls itself on equal
sized subarrays that are distinct

– Easy to parallelize
● Solve subproblems in separate threads of

execution

– The merge procedure of two subproblems
cannot be parallelized

36

Speeding things up – merge-sort

● Non-parallel version
public void mergeSort() {
 sort(0,A.length-1);
}

private void sort(int p, int r) {
 if (p < r) {
 int q = (p+r)/2;
 sort(p,q);
 sort(q+1,r);
 merge(p,q,r);
 }
}

37

Concurrent merge sort

● Parallel merge sort
public void parallelMergeSort() {
 final int q = A.length/2-1;
 // Declare threads t1 and t2
 // See next slide
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 merge(0, q, A.length-1);
}

38

Concurrent merge sort

Thread t1 = new Thread(new Runnable() {
 @Override
 public void run() {
 sort(0,q);
 }
});

● Same for t2 but with:
sort(q+1,A.length-1);

● On previous slide, “join” needs to be
surrounded with try-catch

39

Concurrent merge sort – results

0
1000000

2000000
3000000

4000000
5000000

6000000
7000000

8000000
9000000

10000000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Mergesort

Mergesort
Mergesort (2 threads)

Input size

T
im

e
 (

m
s)

40

Concurrent merge sort –
conclusion

● Running merge sort concurrently with only
two threads speeds up execution

– It is consistently faster
● It is not consistently improving speed

● I cannot verify if it actually runs on both
cores of my system

41

Speeding things up – quicksort

● We can speed up quicksort like merge sort
● The partition procedure cannot be easily

parallelized (just like merge)
● Also, subproblems are not necessarily

equal in size
– Because of pivot element

● Potentially no speed up

42

Speeding things up – quicksort

● Non-parallel quicksort
public void quickSort() {
 sort(0,A.length-1);
}

private void sort(int p, int r) {
 if (p < r) {
 int q = partition(p,r);
 sort(p,q-1);
 sort(q+1,r);
 }
}

43

Concurrent quicksort

● Parallel quicksort
final int q = partition(0, A.length-1);
 // Declare threads t1 and t2
 // See next slide
 t1.start();
 t2.start();
 t1.join();
 t2.join();
}

44

Concurrent quicksort

Thread t1 = new Thread(new Runnable() {
 @Override
 public void run() {
 sort(0,q-1);
 }
});

● Same for t2 but with:
sort(q+1,A.length-1);

● On previous slide, “join” needs to be
surrounded with try-catch

45

Concurrent quicksort – results

0
1000000

2000000
3000000

4000000
5000000

6000000
7000000

8000000
9000000

10000000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Quicksort

Quicksort
Quicksort (2 threads)

Input size

T
im

e
 (

m
s)

46

Sorting – results

0
1000000

2000000
3000000

4000000
5000000

6000000
7000000

8000000
9000000

10000000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Sorting comparison

Mergesort
Mergesort (2 threads)
Quicksort
Quicksort (2 threads)

Input size

T
im

e
 (

m
s)

47

Are we done?

● Class democracy
– Should we have a class next week?

48

Class summary

● You (should) have
– Implemented important data structures

– Learned (somewhat) to use C++

– Got an understanding of how to go from an
abstract description (pseudocode) to
concrete implementation

– Learned to solve problems largely by
yourself or with small hints

– Had some fun with it all

49

Class summary

● And that's it, I guess.
● There's no final exam
● Good luck with assignment 5
● Good luck next term

50

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

