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Welcome back!

Data structures lab – week 9
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Agenda for today

● Final word on assignment 4
● Sorting
● Divide and conquer
● How to speed things up
● Assignment 5
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Wake-up quiz – assignment 4

● What is the key for first hidden message?

a) 1

b) 2

c) 3

d) 4
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Wake-up quiz – checking progress

● What is the key for first hidden message?

a) 1

b) 2

c) 3

d) 4

● The correct answer is...
– I won't tell you if you don't know

● I'm just checking in
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Assignment 4 – decrypting

● Remember, implement extract-min
– Do not use heapsort to do your job

● Tempting to do though
– One build-heap
– One heapsort
– Look at every (k+1)th word

● I basically already gave you all the code to 
do this. So don't :-)

– Even your program from assignment 3 
could be used to decrypt the messages

● But you need to learn about heaps.
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Increasing array size

● Someone wondered how real-world 
implementations deal with array increases.

– Java's ArrayList source code:
● newCapacity = (oldCapacity * 3)/2 + 1

– After that, it is native system calls (C code)
● System.copyarray()
● Makes a so-called “shallow” copy

– Does not create new objects, 
only copied references

– According to online forums
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Cryptographic systems

● Someone else wondered:
● “Isn't this called a symmetric cipher, since 

both sender and recipient have the same 
key? A public-key system would be a 
more secure but it's more difficult to 
implement.”

– Yes, it is a symmetric key cryptographic 
system you are implementing.

– But a public-key system is not necessarily 
more secure. They both have 
advantages and disadvantages

● But let's not pick up that discussion now
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Sorting

● Sorting is a fundamental operation
● Sorting is a sub-routine in many algorithms

– Shortest path

– Scheduling

– Computational geometry

– Many more
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Sorting – complexity

● Sorting has a proved lower bound of 
Ω(n lgn) for comparison sorts.

– Comparison meaning comparing elements

● If certain (true) assumptions are made, the 
running time can be reduced to linear time 
in some cases

– But read chapter 8 if you want to know 
more about that
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Sorting – implementation

● You have already implemented data 
structures that support fast O(nlgn) sorting

– Heaps
● Heapsort

– Binary search trees (balanced)
● In-order-tree-walk

– Not usually used for sorting
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Assignment 5

● Optional
– But only if you have more than 380 points!

● Due one week from now
● Implement quicksort
● Implement at least two other sorting 

algorithms
● Compare performance

– Small write-up, ½-1 page, maybe with a 
graph
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Divide and conquer – the concept

● Divide: Split a problem into subproblems
● Conquer: Solve each subproblem 

recursively
● Combine: Combine the solutions
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Merge-sort

● Is a divide and conquer algorithm
● ϴ(n lgn) running time.
● Simple implementation
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Merge-sort – algorithm

● For an array A with n elements
– Divide: Create subarrays of size n/2

● Until reaching a base case where the sub 
arrays have length 1

– Conquer: Sort the subarrays recursively

– Combine: Merge the sorted subarrays
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Merge-sort
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Wake-up quiz – merge-sort

● For an array of size n, what is the running 
time of the merge procedure?

a) O(1)

b) O(lg n)

c) O(n)
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Wake-up quiz – merge-sort

● For an array of size n, what is the running 
time of the merge procedure?

a) O(1)

b) O(lg n)

c) O(n)

● The correct answer is c
– That must mean that the array is divided 

lg(n) times
● But you already knew that because of your 

knowledge with binary search trees.
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Quicksort

● Is a divide and conquer algorithm
● O(n lg n) average case running time but 

O(n2) worst case running time
– Worst case rarely happens

● Widely used for sorting
– Java's Arrays.sort uses the quicksort

● But not from CLRS though

– Probably also C++ but I couldn't find 
confirmation for this.
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Quicksort – algorithm

● For an array A with n elements
– Divide: Partition A into two subarrays  

around an index q such that
● Values of elements A[0..q-1] are less than 

(or equal to) A[q]
● Values of elements A[q+1,n-1] are greater 

than (or equal to) A[q]

– Conquer: Recursively sort the the 
subarrays

– Combine: The subarrays are already 
sorted so we do not need to combine.
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Quicksort – partition

● 5 is the pivot element
● We maintain pointers to current element 

less than and greater than 5
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Wake-up quiz – quicksort

● For an array of size n, what is the running 
time of the partition procedure?

a) O(1)

b) O(lg n)

c) O(n)
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Wake-up quiz – quicksort

● For an array of size n, what is the running 
time of the partition procedure?

a) O(1)

b) O(lg n)

c) O(n)

● The correct answer is c
– That must mean that we hope to split the 

array lg(n) times
● Depends on the pivot
● Hints why we have O(n2) worst case
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Sorting – comparison

● I implemented heapsort, mergesort and 
quicksort in C++

– Similar to assignment 5

● I did not use fancy data structures
– Just plain old int arrays

● Input sizes from 100-10,000,000
● Which one do you think is the fastest?
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Sorting – results
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Sorting – conclusion

● Quicksort is fastest
● But maybe we can do better than this?

– Without changing algorithms
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Speeding things up

● Merge-sort and quicksort are cool
– They are both divide-and-conquer

– They have the same average case running 
time

● They are fast

– They are easy to make faster
● In theory at least

● Let's talk concurrency a bit
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Parallelism / Concurrency

● Parallel and concurrent is not the same
● Sun's “multithreaded programming guide”

– Parallelism:
● “A condition that arises when at least two 

threads are executing simultaneously.”

– Concurrency
● “A condition that exists when at least two 

threads are making progress. A more 
generalized form of parallelism that can 
include time-slicing as a form of virtual 
parallelism”
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Parallelism / Concurrency

● For two processes P1, P2:
– Parallelism:

● P1 and P2 can execute at the exact same 
time

● E.g. executing P1 and P2 on separate 
CPUs.

– Concurrency:
● P1 and P2 may overlap in their execution

– But not necessarily run in parallel
● E.g. executing P1 and P2 on the same 

CPU (multitasking)
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Concurrent programming

● Most modern programming languages 
have support for concurrency

– Java: Thread in java.lang
● Easy to use
● I'll focus on this one

– C++: pthread
● Not so easy to use

– Python: Thread in threading
● I haven't played with it
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Why concurrency?

● Operating systems would not work without 
multitasking

● Large-scale database systems would not 
work without concurrency

● Games would be unplayable without 
concurrency

● Because it can speed things up
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Concurrency in Java

● Threads of the class Thread can run 
concurrently

– Not necessarily in parallel.

● Each thread runs a small subprogram that 
is of the type Runnable

● Implement either interface Runnable or 
extends class Thread.
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Concurrency in Java – example

● A class that just prints 0 to 9
public class PrintTenNumbers 
implements Runnable {
  public void run() {
    for (int i = 0; i < 10; i++) {
      System.out.println(i);
    }
  }
}
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Concurrency in Java – example

● Making two threads that does this
public static void main(String[] args) 
{
  Thread t1 = new Thread(new 
PrintTenNumbers());
  Thread t2 = new Thread(new 
PrintTenNumbers());
  t1.start(); // Starts the thread
  t2.start();
  t1.join(); // Wait for thread to stop
  t2.join();
}
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Concurrency in Java

● Theoretically, the previous example should 
print out 0 to 9 in any order, interleaving 
between the threads

● In practice, this is not always the case
– Java does not allow you to control that you 

want something executing on different 
CPUs / cores, i.e. true parallelization

● So we can only assume that they do
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Speeding things up – merge-sort

● Merge-sort recursively calls itself on equal 
sized subarrays that are distinct

– Easy to parallelize
● Solve subproblems in separate threads of 

execution

– The merge procedure of two subproblems 
cannot be parallelized
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Speeding things up – merge-sort

● Non-parallel version
public void mergeSort() {
  sort(0,A.length-1);
}

private void sort(int p, int r) {
  if (p < r) {
    int q = (p+r)/2;
    sort(p,q);
    sort(q+1,r);
    merge(p,q,r);
  }
}
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Concurrent merge sort

● Parallel merge sort
public void parallelMergeSort() {
  final int q = A.length/2-1;
  // Declare threads t1 and t2
  // See next slide
  t1.start();
  t2.start();
  t1.join();
  t2.join();
  merge(0, q, A.length-1);
}
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Concurrent merge sort

Thread t1 = new Thread(new Runnable() {
  @Override
  public void run() {
    sort(0,q);
  }
});

● Same for t2 but with:
sort(q+1,A.length-1);

● On previous slide, “join” needs to be 
surrounded with try-catch
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Concurrent merge sort – results
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Concurrent merge sort – 
conclusion

● Running merge sort concurrently with only 
two threads speeds up execution

– It is consistently faster
● It is not consistently improving speed

● I cannot verify if it actually runs on both 
cores of my system
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Speeding things up – quicksort

● We can speed up quicksort like merge sort
● The partition procedure cannot be easily 

parallelized (just like merge)
● Also, subproblems are not necessarily 

equal in size
– Because of pivot element

● Potentially no speed up
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Speeding things up – quicksort

● Non-parallel quicksort
public void quickSort() {
  sort(0,A.length-1);
}

private void sort(int p, int r) {
  if (p < r) {
    int q = partition(p,r);
    sort(p,q-1);
    sort(q+1,r);
  }
}
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Concurrent quicksort

● Parallel quicksort
final int q = partition(0, A.length-1);
  // Declare threads t1 and t2
  // See next slide
  t1.start();
  t2.start();
  t1.join();
  t2.join();
}
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Concurrent quicksort

Thread t1 = new Thread(new Runnable() {
  @Override
  public void run() {
    sort(0,q-1);
  }
});

● Same for t2 but with:
sort(q+1,A.length-1);

● On previous slide, “join” needs to be 
surrounded with try-catch
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Concurrent quicksort – results
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Sorting – results
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Are we done?

● Class democracy
– Should we have a class next week?
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Class summary

● You (should) have
– Implemented important data structures

– Learned (somewhat) to use C++

– Got an understanding of how to go from an 
abstract description (pseudocode) to 
concrete implementation

– Learned to solve problems largely by 
yourself or with small hints

– Had some fun with it all
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Class summary

● And that's it, I guess.
● There's no final exam
● Good luck with assignment 5
● Good luck next term
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Thank you

Questions?
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