CIS 422/522

CIS 422/522 Overview

Admin; Projects and Teams
Schedule
Grading
Lecture/Disc.: What is software engineering?

CIS 422/522 Fall 2011

Contact Information

e |nstructor contact
Stuart Faulk
faulk@cs.uoregon.edu
346-1350

Computer and Information Science
120 Deschutes Hall
University of Oregon
Eugene, OR 97403

« Office Hours: 2:00 — 3:00 after class or by
appointment

CIS 422/522 Fall 2011

Instructor Background

* Real World Experience
— R&D U.S. Naval Research Lab (15 years)
« Embedded and real-time systems

« Software Engineering methodology (requirements, design,
concurrency)

— R&D Aerospace industry (5 years)
« Requirements methods, software product lines
— Consulting (various)
e Academic (15 years)

— Developed and teach in Oregon Master of Software
Engineering (industry professionals)

— Research in software engineering
» Potential weaknesses

— Do not use many current programming technologies (so |
cannot help with technology)

CIS 422/522 Fall 2011

CIS 422 Course Format

¢ Single Quarter Project Course
— Lectures: Foundations and background
— Projects: Learn how to apply SE concepts
— Project Meetings: Learn teamwork

— Project Reviews and Presentations: Critique and
guidance

e Two team projects
— First for perspective on SE issues
— Second to demonstrate learning and ability

« Two exams (midterm, final) address individual
understanding

CIS 422/522 Fall 2011

Emphasis is on Life-Cycle
Management and Teamwork

CIS 422/522

Participate in collaborative design

Work as a member of a project team,
assuming various roles

Create and follow a project and test plan

Create the full range of documents
associated with a software product

Complete a project on time
Key point: the focus is not on coding!

CIS 422/522 Fall 2011

Projects

» 2 projects: 4 weeks, 5 weeks
— Project 1: Small selection
» Same basic requirements for everyone
— Project 2: TBD
* You will propose projects
« Technically simple, but high expectations
— Solid freeware quality

— Complete product includes internal and external
documentation, tests

CIS 422/522 Fall 2011

Teams

« Form teams of 4-5 people
— Project 1: Instructor chooses teams

— Project 2: Choose your own teams
 the most important decision you will make

« Project grades are group grades
— Every member responsible for every part
— Members will evaluate each other (GMES)

CIS 422/522 Fall 2011

Questionnaire

e Purpose
— Formation of balanced project 1 teams
— Beginnings of grade database
e Fillin
— Name (family, given), What you would like to be
called

— Proficiencies
» 1 low, 3 average, 5 high

CIS 422/522 Fall 2011

CIS 422/522

Weekly Schedule

* Tuesday and Thursday lectures
— Mix of lectures, discussions, group exercises

— Some lecture times or parts thereof will be used
for team meetings and project discussions

* Meetings with the professor
— Design reviews
— Grading

CIS 422/522 Fall 2011 9

Grading

* 55% Projects (20+30)
— Includes presentations, intermediate deliverables
— Weighted toward non-code products

* 35% Exams (15+20)
— Two midterms; no final exam

* 10% Class Participation
— Includes but is not limited to...
« Attendance (required)
« Contributing the discussions (can also be done via email)

» Appropriate behavior in the classroom (i.e. no cell
phones or beepers)

CIS 422/522 Fall 2011

10

What is Software Engineering about?

CIS 422/522 Fall 2011 11

The “Software Crisis”

« Have been in “crisis” since the advent of “big”
software (roughly 1965)
« What we want for software development
— Low risk, predictability
— Lower costs and proportionate costs
— Faster turnaround
* What we have:
— High risk, high failure rate
— Poor delivered quality
— Unpredictable schedule, cost, effort
» Characterized by lack of control (inability plan the
work, work the plan)

CIS 422/522 Fall 2011

12

CIS 422/522

Symptoms of the “Crisis”

* One of every four large software project is

cancelled

« Average projects overshoot schedule by 50%,

large project do much worse

* 75% of large systems are failures in the

sense that they do not operate as intended

» 60% of them fail to deliver a single working

line of code

« E.g., Ariane 5, Therac 25, Mars Lander, DFW

Airport, FAA ATC etc., etc. (See examples in
Text)

CIS 422/522 Fall 2011 13

Discussion Context

Focus large, complex systems

— Multi-person: many developers, many stakeholders

— Multi-version: intentional and unintentional evolution
Quantitatively distinct from small developments

— Complexity of software (e.g. rises non-linearly with size)
— Complexity of communication rises exponentially
Qualitatively distinct from small developments

— Multi-person introduces need for organizational functions
(management, accounting, marketing), policies, oversight,
etc.

— More stakeholders and more kinds of stakeholders

Rule of thumb: project starts to be “large” when group
developing a single product can'’t fit around a table.

CIS 422/522 Fall 2011

14

Software is Pre-Industrial

Pre-Industrial Post-Industrial

Craftsman builds product * Products produced by
— Builds one product at a time machines
— Each product is unique, parts — Quality depends on
are not interchangeable machines & manufacturing
— Quality depends on process
craftsman’s skill — product of — Production requires little
training, experience training or experience
— Many opportunities for error « Focus on developing the
Focus on individual products means of production
— Customization is easy - Cr_aftsman builds means to
Scaling is difficult build product (tools, factory)

— Parts are not interchangeable — Customization is difficult

— No economy of scale Easily scales_
— Control problems rise — Parts are interchangeable

exponentially with product — Products are alike
size! — Economies of scale apply

CIS 422/522 Fall 2011 15

Implications

Small system development is driven by technical issues
(I.e., programming)

Large system development is dominated by
organizational issues

— Managing complexity, communication, coordination, etc.

— Projects fail when these issues are inadequately addressed

Lesson #1: programming # software engineering

— Techniques that work for small systems fail utterly when scaled
up

— Programming alone won't get you through real developments or
even this course

CIS 422/522 Fall 2011

16

CIS 422/522

Programming View

Get Requirements

Write
Program

Test
Program

CIS 422/522 Fall 2011 17

DoD 2167 Life Cycle

Review Phase Document Review Phase Document

Project Project Project Operational Full Seale
i Readiness D ploymert
g Review Analysis Review (by sit [Coenioed B
B
Project Project Operational Inital
3 % Pm Prject Pian Reodinecs Inusal De ploymeat ,E
4f Review Flan Review De ployee ré ot i
&E - ——— -
B
1"

Pucject IT e

Supgert Pocspue Teat 3
Definition Repont 5
Spem SATTest Inwgraton
Sequent Readiness Etomg || Ten

Specification Review Deseription

Swkem Integration Test

Design Readiness Tet ¥
Spéﬁfﬂhﬂn Review Description E
CI Softwaze CI Test c1 &%
Req Readiness P f;:“ Teat 2
Specification Review Deacripion O
CI Software Cl Critical cl Cl Software ii
Design Tesign Detsiled Design z
Desription Review Design Description. =

CIS 422/522 Fall 2011

18

Origins of SE

Term “software engineering” was coined at 1968 NATO
conference:

“Software engineering is the establishment and use of sound
engineering principles in order to obtain economically software
that is reliable and works efficiently on real machines.”

Response to “software crisis” manifest by systems that
— Failed to provide desired customer functionality

— Lacked critical qualities (e.g., performance, safety, reliability)
— Overran budget and schedule (hugely)

— Were difficult to change or maintain

Desire for SE to be more like other engineering
disciplines

— Analytical, predictable, manageable

— State as an aspiration, not statement of existing condition

CIS 422/522 Fall 2011 19

Has anything changed?

Incorrect to conclude that no progress has been
made

— Substantial improvements in programming languages, tool
— Better understanding and control of processes

But the problems have also changed

— Large developments now are orders of magnitude more
code than in 1968

— Improved capabilities are overcome by larger problems,
greater complexity

Note: “software crisis” is a euphemism for “state of
the practice”

CIS 422/522 Fall 2011

20

What hasn’t changed?

Still not an engineering discipline in classic sense

— Implies use of applied mathematics and systematic methods
to develop and assess product properties

— These tools are immature where they exist at all

— Software “engineering” is not taught, licensed, regulated, ore
recognized as an engineering discipline (e.g., by engineers)

But we often don’t apply what we know

— Existing methods, models often not understood or used in
industry

— Little attention is given to process or products other than
code

— Quality of products depends on qualities of the individuals
rather than qualities of engineering practices

Development continues to be characterized by lack
of control (inability plan the work, work the plan)

CIS 422/522 Fall 2011 21

CIS 422/522

View of SE in this Course

e The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.

— “Intellectual control” means that we are able make
rational choices based on an understanding of the
downstream effects of those choices (e.g., on
system properties).

— Managerial control similarly means we are able to
make rational choices about development
resources (budget, schedule, personnel).

CIS 422/522 Fall 2011 22

Control is the Goal

Both are necessary for success!
Intellectual control implies
— We understand what we are trying to achieve
— Can distinguish good choices from bad
— We can reliably and predictably build to our goals
« Functional behavior
« Software Qualities (reliability, security, usability, etc.)
Managerial control implies
— We make accurate estimations
— We deliver on schedule and within budget
Assertion: managerial control is not really possible without
intellectual control (no matter what the Harvard School of
Business says)

CIS 422/522 Fall 2011 23

Course Approach

« Will learn methods for acquiring and maintaining
control of software projects

* Intellectual control
— Methods for software requirements, architecture, design, test
— Notations, verification & validation

e Managerial control

— Planning and controlling development

— Process models addressing development issues (e.g. risk,
time to market)

— People management and team organization

« Caveat: we can really only scratch the surface in 10

weeks (but it's important)

CIS 422/522 Fall 2011 24

Assignment

* Reading:
— Text: Chapters 1, 2, and 3

— 522 Read: “A Rational Design Process: How and
Why to Fake it,” Parnas & Clements

* Review web site (syllabus, etc)
 Project: prepare for first project meeting
(team assignments)
— Read project description
— Think about what role you want to play

CIS 422/522 Fall 2011 25

CIS 422/522

