Name:

CIS 122

Midterm Exam

July 18, 2011

1. (14 points) Evaluate the following simple expressions (as Python would).
(a) $2+3 * 4$
(b) $10 / 4$
(c) $10 * 1.0$
(d) $10.0 / 4$
(e) "Beseech" [5]
(f) "Beseech" [-2]
(g) "Beseech" [2:5]
2. (12 points) Evaluate the following logical expressions (as Python would).
(a) $\quad 10<=15<=20$
(b) $17.5>17.5$
(c) "ABC" == "abc"
(d) "abcdefg"[3] == "d"
(e) not True or False
(f) ord("?") == 126 and ord("?") != 126
3. (10 points) Consider the following Python code:
```
x = 4
y = 10
if x > y:
    x = x + 1
    y = x * y
elif x < y:
    x = x - 1
    y = x * 2
else:
    x = y
    y = x
```

After running this code, what values would x and y have?
4. (14 points) Draw a stack diagram for the following code.

Remember to include all stack frames, as well as all defined functions and variables.

```
def foo(u,v):
    sum = u+v
    prod = u*v
    ans = bar(sum, prod)
    return ans
def bar(x,y):
    z = 10*x
    return y+z
def baz(n):
    m = foo(n+1, n-1)
    return n + m
a = baz(3)
```

5. (15 points) What does the following function do?

Dont just list the steps it takes. Tell me what its purpose is!
You may assume that \mathbf{x} and \mathbf{y} are both integers.

```
def mystery(x,y):
    """What do I do?"""
    difference = x - y
    if difference > 0:
        return x
    else:
        return y
```

6. (15 points) What does the following function do?

Dont just list the steps it takes. Tell me what its purpose is!
You may assume that string is a string, and that element is a single-character string.

```
def stringChecker(string, element):
    """What do I do?"""
    if string == "":
        return False
    elif string[0] == element:
        return True
    else:
        return stringChecker(string[1:], element)
```

7. (20 points) Use recursion to write a function isEven(x)

The function isEven(x) should return True if x is even. Otherwise, it should return False. You may assume x is a non-negative integer.

You may find the following information useful.

1. 0 is even
2. 1 is odd
3. In general, an integer is even if the integer two numbers before it is also even.

NOTE You may not use the $\%$ operator when writing this function.

