
CIS 122

Functions Under the Surface

Functions Revisited

● We now have the power to write our own functions

 def plusOne(x):
 """Adds one to x"""
 return x+1

● Who cares?
○ We could just write the same code outside a function...

■ y = plusOne(x)
■ y = x+1

○ Why do we need functions?

Functions Revisited

● �Functions simplify coding
○ Easier to solve small problems
○ Construct building blocks

● Reduce redundancy
○ Don't write the same 5 lines of code over and over
○ Write one function and call it 5 times

● Explain code
○ Descriptive function names

Functions Revisited

● So what are functions exactly?
○ In Python, functions are another type of object
○ Just like ints, strings, ...

● def is just a fancy way of defining a function object

 def addOne(x):
 return x+1

 >>> foo = addOne
 >>> foo(1)
 2

Functions Revisited

● What can we do with functions?
○ We can add ints...
○ We can slice strings...
○ We can call functions

● Also, anything we can do with a normal value
○ Print out
○ Assign to a variable
○ Give as argument to a function

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5
 y → 6

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → 11

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → 11
 c → 16

foo
 x → 5
 y → 6
 z → 11

Keeping track of your code

● Code doesn't always run linearly
○ During function calls, other code is put on hold
○ Python creates a new stack frame in memory
○ These stack frames can nest

● Who's seen the movie Inception?

More Fun with Functions

● Functions can take more than one argument
○ Just put more arguments in the header

 def sum(a, b):
 """Adds two numbers together"""
 return a + b

● Functions can take no arguments
○ Maybe you want to wrap up some computation...

 def returnFive():
 """Returns five"""
 return 5

● How would we write a power function?

More Fun with Functions

● Functions can call other functions
○ Good for breaking problems down

 def countRedSkittles():
 <skittle counting code>

 def countBlueSkittles():
 <skittle counting code>

 def countAllSkittles():
 """Returns a total skittle count"""
 red = countRedSkittles()
 blue = countBlueSkittles()
 return red + blue

Variable Scoping

● Variables exist within a specific scope
○ Only make sense within a certain context

● Variables within a function cannot be seen from outside
○ Don't overwrite outside variables
○ Deleted when function ends

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo
 x → 6

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo
 x → 6
 z → 7

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo
 x → 6
 z → 7

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → 7

foo
 x → 6
 z → 7

Variable Scoping

● Why is variable scoping important?
○ Lots of built in functions in Python
○ We don't know (or care) how they're written
○ My code shouldn't depend on someone else's variable

names!

Function Quiz

def foo(x):
 y = x + 5
 z = bar(x, y)
 return z

def bar(a, b):
 c = a * b
 return c

a = 2
b = foo(a)

Function Quiz

def foo(x):
 y = x + 5
 z = bar(x, y)
 return z

def bar(a, b):
 c = a * b
 return c

a = 2
b = foo(a)

→ <function object>
→ <function object>
→ 2
→ 14

→ 2
→ 7
→ 14

→ 2
→ 7
→ 14

__main__
 foo
 bar
 a
 b

foo
 x
 y
 z

bar
 a
 b
 c

