
CIS 122

Now you're thinking with turtles!

Logistics

● Most homework received
○ Try to get them in on time
○ Only 3 late credits
○ Solutions will be posted when they're all in

● Not going to review homework
○ If you have questions, come ask me

Logistics

● Midterm next Monday
○ Recap on Thursday
○ Review session on Friday
○ Study guide is coming

● There will be a homework due this week
○ Shorter than usual
○ Only 2 real problems (and a bit of extra credit)

● Due Date
○ Scheduled for Sunday night
○ Would you prefer earlier?

Dueling Paradigms

● Different philosophies towards programming
○ Functional Programming
○ Imperative Programming
○ Object Oriented Programming

Dueling Paradigms

● Functional Programming
○ Functions exist to return values
○ Calling a function should not change the world

● No side effects
○ Reassigning variables
○ Printing information

● Idempotent
○ Calling function multiple times does not change result

Dueling Paradigms

 def foo(x):
 x = x+1
 return x

 a = foo(1)
 a = foo(1)
 a = foo(1)

 print a

Dueling Paradigms

● Imperative Programming
○ Functions exist to do work
○ May or may not return useful information

● Functions can change the world
○ Variables may hold different values afterwards
○ May have printed out messages

● Non-idempotent
○ Calling function multiple times may yield different results

Dueling Paradigms

 x = 0

 def foo():
 x = x+1
 return x

 a = foo()
 a = foo()
 a = foo()

 print a

Turtle Graphics

● Graphical Output
○ Turtle Drawing
○ Imperative

● The turtle module contains line drawing functions
○ You control a "turtle"
○ Tell it to go forwards, backwards, left, right
○ Kind of like an etch-a-sketch

● Turtle functions don't return values
○ (well, technically, they return None)
○ They issue commands to the turtle

Turtle Graphics

● IDLE doesn't cooperate with turtle graphics
○ Need to open IDLE in a special mode

● Open the command prompt
○ Terminal for macs

● Enter the IDLE path followed by "-n"
○ C:\Python27\Lib\idlelib\idle.pyw -n (lab computers)
○ <somewhere else> -n (pc laptops)
○ idle -n (mac laptops)

● IDLE should start up with a special message
○ ==== No Subprocesses ====

Turtle Graphics

● First, import the turtle module
○ import turtle

● Now, you're ready to draw!
○ turtle.forward(dist)
○ turtle.backward(dist)
○ turtle.left(angle)
○ turtle.right(angle)

● And one more really useful function
○ turtle.reset()

Turtle Graphics

● What does this code do?

 turtle.forward(100)
 turtle.left(120)
 turtle.forward(100)
 turtle.left(120)
 turtle.forward(100)

Turtle Graphics

● What does this code do?

 turtle.forward(100)
 turtle.left(120)
 turtle.forward(100)
 turtle.left(120)
 turtle.forward(100)

● Draws an equilateral triangle
○ Equilateral triangle has 60° angles
○ Why did we turn left 120°?

Turtle Graphics Practice

● Write code to draw this shape
○ Write it in a file
○ Start with turtle.reset()

Turtle Graphics Practice

● Writing out the same code is a pain
○ Programmers are lazy
○ Never do the same work twice

● Write a square function
○ square(length)
○ Draws a square with sides of the given length

● Use your square function to draw our shape again

