
CIS 122

Turtles all the way down

Turtle Graphics

● Open IDLE in "No Subprocess mode"
○ Command Prompt / Terminal
○ <IDLE location> -n

● Import turtle module
○ import turtle

● Start drawing
○ turtle.forward(dist)
○ turtle.backward(dist)
○ turtle.left(angle)
○ turtle.right(angle)
○ turtle.reset()

All Squared Away

● Yesterday, we tried to draw this image
○ Here's one way to do it

 turtle.forward(100)
 turtle.left(90)
 turtle.forward(100)
 turtle.left(90)
 turtle.forward(100)
 turtle.left(90)
 turtle.forward(100)
 turtle.left(90)
 turtle.forward(70)
 ...

All Squared Away

● We don't need that much code

● Let's write a square function instead
○ Then we can call it when needed

All Squared Away

● We don't need that much code

● Let's write a square function instead
○ Then we can call it when needed

 def square(length):
 turtle.forward(length)
 turtle.left(90)
 turtle.forward(length)
 turtle.left(90)
 turtle.forward(length)
 turtle.left(90)
 turtle.forward(length)
 turtle.left(90)

All Squared Away

● Now we can rewrite our drawing code

 square(100)
 turtle.forward(20)
 square(60)

● Much cleaner
○ But our square code feels overly complicated

All Squared Away

● Our square function does the same stuff repeatedly
○ Go Forward
○ Turn Left

● Let's write write square recursively
○ But what is there to recurse on?
○ What gets smaller as we draw our square?

All Squared Away

● Recurse on the number of sides left to draw
○ square(length, sidesLeft)

● Base Case

● Recursive Step

All Squared Away

● Recurse on the number of sides left to draw
○ square(length, sidesLeft)

● Base Case
○ No sides left to draw

● Recursive Step

All Squared Away

● Recurse on the number of sides left to draw
○ square(length, sidesLeft)

● Base Case
○ No sides left to draw

● Recursive Step
○ To draw a square with x sides left
○ Draw one side
○ Then draw a square with x-1 sides left

All Squared Away

 def square(length, sidesLeft):
 if sidesLeft == 0:
 return
 else:
 turtle.forward(length)
 turtle.left(90)
 square(length, sidesLeft - 1)

All Squared Away

 def square(length, sidesLeft):
 if sidesLeft == 0:
 return
 else:
 turtle.forward(length)
 turtle.left(90)
 square(length, sidesLeft - 1)

● This function takes two arguments
○ What if we want a square function with only one?

● Outsiders shouldn't care how our function is implemented
○ Want to call square(50), not square(50, 4)

All Squared Away

 def square(length, sidesLeft = 4):
 if sidesLeft == 0:
 return
 else:
 turtle.forward(length)
 turtle.left(90)
 square(length, sidesLeft - 1)

● Default arguments
○ If you don't specify a value, default to the given one

● Now, we can call square(50)
○ and sidesLeft will default to 4

More Cool Turtle Functions

● turtle.width(size)
○ Sets the width of your lines in pixels
○ Minimum 1 pixel
○ No maximum
○ What happens if you set width to...

■ 50?
■ 100?
■ 1000?

More Cool Turtle Functions

● turtle.setpos(pos)
○ Moves turtle to given coordinate position
○ Only takes one argument
○ But we need two coordinates...

● How can we store two coordinates in only one variable?
○ Use a tuple

Tuple Aside

● Tuples are another type of values
○ Store multiple values together

■ (1, 2, 3)
■ (1, "b", True)

○ We'll see them more in the future

More Cool Turtle Functions

● turtle.setpos(pos)
○ Moves turtle to given coordinate position
○ Only takes one argument
○ But we need two coordinates...

● How can we store two coordinates in only one variable?
○ Use a tuple
○ turtle.setpos((25, 50))

● NOT the same as calling setpos with two arguments
○ turtle.setpos(25, 50)
○ This code will not run

A Turtle of a Different Color

● turtle.color(color)
○ Sets the color of your turtle
○ And the lines it draws

● Color can be a string
○ turtle.color("red")
○ turtle.color("blue")

● But what if you want finer color control?
○ Only so many color names...

A Turtle of a Different Color

● Display colors are made by combining primary colors
○ Red
○ Green
○ Blue

● We can describe a color with these components
○ (Red Intensity, Green Intensity, Blue Intensity)
○ More tuples...

● A few common colors
○ Red = (1, 0, 0)
○ Yellow = (1, 1, 0)
○ White = (1, 1, 1)

A Turtle of a Different Color

● Color intensities range from 0 to 1
○ (0.0, 0.0, 0.0) - Black
○ (0.3, 0.3, 0.3) - Dark Gray
○ (0.6, 0.6, 0.6) - Light Gray
○ (1.0, 1.0, 1.0) - White

A Turtle of a Different Color

● Let's draw a line that blends from one color into another

def blend(greenValue, redValue):
 if redValue >= 1:
 return
 else:
 myColor = (redValue, greenValue, 0)
 turtle.color(myColor)
 turtle.forward(15)
 blend(greenValue + 0.5, redValue - 0.5)

>>> blend(1, 0)

