
CIS 122

Let's do that again!

Homework Review

● Most homework submitted
○ Will post homework solution
○ Will go over in more detail

● Generally correct
○ Trouble on part 3

● A few easy things
○ Include your name
○ Remember docstrings
○ Remember comments

Homework 1 Continued

● You wrote max, max3, max5
○ What about general max function?

● You wrote single character shifter
○ Could probably write 2-character shifter
○ What about arbitrary length text shifter?

● Don't have the right tools yet
○ Let's fix that

The Factorial Function

● Represented by the ! symbol

● Product of all numbers up to x
○ 3! = 3 * 2 * 1 = 6
○ 5! = 5 * 4 * 3 * 2 * 1 = 120

● Factorial gets really large really quickly
○ 10! = 3628800
○ 20! = 2432902008176640000
○ 30! = 265252859812191058636308480000000
○ You get the idea...

The Factorial Function

● How would we write a factorial function?

 def factorial(x):
 if x==1:
 return 1
 elif x==2:
 return 1 * 2
 elif x==3:
 return 1 * 2 * 3
 elif ...

● This could take a while...

The Factorial Function

● Let's reexamine our problem

● Suppose we want to calculate 10!

 10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

The Factorial Function

● Let's reexamine our problem

● Suppose we want to calculate 10!

 10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

The Factorial Function

● Let's reexamine our problem

● Suppose we want to calculate 10!

 10! = 10 * 9!

The Factorial Function

● Let's reexamine our problem

● Suppose we want to calculate 10!

 10! = 10 * 9!

● If we knew 9 factorial, 10 factorial would be easy
○ But how do we calculate 9 factorial?

The Factorial Function

● Let's reexamine our problem

● Suppose we want to calculate 10!

 10! = 10 * 9!

● If we knew 9 factorial, 10 factorial would be easy
○ But how do we calculate 9 factorial?

 9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

The Factorial Function

● Let's reexamine our problem

● Suppose we want to calculate 10!

 10! = 10 * 9!

● If we knew 9 factorial, 10 factorial would be easy
○ But how do we calculate 9 factorial?

 9! = 9 * 8!

The Factorial Function - Take Two

● It's hard to calculate x!
○ But x! is just x * (x-1)!
○ If we knew (x-1)!, it would be easy to find x!
○ Let's try writing that function again...

 def factorial(x):
 answer = x * factorial(x-1)
 return answer

● How do we feel about this code?
○ Let's try drawing up a stack diagram...

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

factorial

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

factorial
 n → 0
 answer → ???

The Factorial Function - Take Two

def factorial(n):
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

This could take a while...

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

factorial
 n → 0
 answer → ???

The Factorial Function - Take Two

● We're making progress
○ Now our code is finite
○ But it doesn't terminate...

● Let's fix that
○ Need somewhere to stop
○ A Base Case

The Factorial Function - Take Three

● Let's pick a really easy case
○ We know 0 factorial is 1
○ If we see the input 0, we'll just return 1

 def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

● What happens when we run this code?
○ Back to the stack...

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

factorial

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → ???

factorial
 n → 0
 answer → 1

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → ???

factorial
 n → 1
 answer → 1

factorial
 n → 0
 answer → 1

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → ???

factorial
 n → 2
 answer → 2

factorial
 n → 1
 answer → 1

factorial
 n → 0
 answer → 1

The Factorial Function - Take Three

def factorial(n):
 if n==0:
 return 1
 else:
 answer = n * factorial(n-1)
 return answer

>>> x = factorial(2)

__main__
 factorial → <func>
 x → 2

factorial
 n → 2
 answer → 2

factorial
 n → 1
 answer → 1

factorial
 n → 0
 answer → 1

Recursion

● Reducing a problem to a smaller version of itself

● "To understand recursion, you must first understand
recursion"

○ Try googling "recursion"

● Two Components
○ Base Case
○ Recursive step

Base Case

● Some easy known case
○ Generally something small and trivial
○ 0! = 1

● Want to reduce all other problems down to this case

● Don't forget your base case
○ Code might break
○ Code might never terminate

Recursive Step

● Define the problem in terms of a smaller version of itself
○ How do I compute x factorial?
○ Compute (x-1) factorial and multiply by x

● What do we mean by smaller?
○ Closer to the base case
○ Eventually reduce to the base case

● What happens if our problem doesn't get smaller?
○ Code will never terminate
○ To compute x!, first compute x!

Recursion is all around us

● How do you do the dishes?

● Base case
○ If the sink is empty, you're done

● Recursive step
○ Wash one dish
○ Wash the rest of the dishes

Recursion is all around us

● How do I walk to school?

● Base case
○ If I'm at school, I'm done

● Recursive step
○ Take one step towards school
○ Walk the rest of the way to school

Recursion in Action

● Over to IDLE

