CIS 122

Recursion Strikes Again

Recursion

e Reducing a problem to a smaller version of itself

e Recursive step
o How do | reduce my problem?
o To wash dishes, first wash one dish, then wash the rest
oxl=x7*(x-1)!

e Base Case
o Where do | stop?
o When the sink is empty, the dishes are washed
o0l'=1

Not-So-Basic Arithmetic

e Python can multiply numbers with the * operator
o But what if we want to implement it ourselves?
o Let's break out some recursion!

Not-So-Basic Arithmetic

e Python can multiply numbers with the * operator
o But what if we want to implement it ourselves?
o Let's break out some recursion!

a*b=a+a+a+a+..+a
\

I

b

J

Not-So-Basic Arithmetic

e Python can multiply numbers with the * operator
o But what if we want to implement it ourselves?
o Let's break out some recursion!

a*b=a+a+a+a+.. +a
\

J

b-1

Not-So-Basic Arithmetic

e Python can multiply numbers with the * operator
o But what if we want to implement it ourselves?
o Let's break out some recursion!

a*b=a+ a~*(b-1)

Not-So-Basic Arithmetic

e Python can multiply numbers with the * operator
o But what if we want to implement it ourselves?
o Let's break out some recursion!

a*b=a+ a~*(b-1)

product(a, b) = a + product(a, b-1)

Not-So-Basic Arithmetic

e Base Case
o product(a, 0) =0

e Recursive Step
o product(a, b) = a + product(a, b-1)

Not-So-Basic Arithmetic

e Base Case
o product(a,0) =0

e Recursive Step
o product(a,b) = a + product(a,b-1)

def product(a,b):
T b==0:
return O
else:
return a + product(a, b-1)

Not-So-Basic Arithmetic

e Base Case
o product(a,0) =0

e Recursive Step
o product(a,b) = a + product(a,b-1)

def product(a,b):
T b==0:
return O
else:
return a + product(a, b-1)

e Does it work?
o Test it!

Not-So-Basic Arithmetic

e Base Case
o product(a,0) =0

e Recursive Step
o product(a,b) = a + product(a,b-1)

def product(a,b):
T b==0:
return O
elifb <0:
return -1 * product(a, -b)
else:
return a + product(a, b-1)

Not-So-Basic Arithmetic Quiz

e \Write a recursive power function
opower(a,b)=a*a*a”*... *a(btimes)
o (don't worry about negative b)

e Steps
o Define power recursively
o Come up with a base case
o Put it into code

Not-So-Basic Arithmetic Quiz

e \Write a recursive power function
opower(a,b)=a*a*a”*... " a (b times)

e Base Case
o power(a, 0) = 1

e Recursive Definition
o power(a, b) = a * power(a, b-1)

def power(a, b):
ifb==0:
return 1
else:
return a * power(a, b-1)

Turning Things Around

e How would we reverse a string?

Turning Things Around

e How would we reverse a string?

"ABCDEFG"

Turning Things Around

e How would we reverse a string?
o What if we knew how to reverse part of it?

||A||+"BCDEFG"

Turning Things Around

e How would we reverse a string?
o What if we knew how to reverse part of it?

||A||+"BCDEFG"

||GFEDCB"+"A"

Turning Things Around

e How would we reverse a string?
o What if we knew how to reverse part of it?

e Recursive Step
o Set aside one letter

o Reverse the rest of the string
o Add the letter to the end

||A||+"BCDEFG"

||GFEDCB"+"A"

Turning Things Around

e How would we reverse a string?
o What if we knew how to reverse part of it?

e Recursive Step
o Set aside one letter
o Reverse the rest of the string
o Add the letter to the end

e Base Case
o The empty string reversed is itself

Turning Things Around

def reverse(string):
""Returns the reverse of the input string

Tstring =="":

else:
firstChar = string[0] # Set aside first char
rest = string[1:] # Set aside rest of string
return reverse(rest) + firstChar

Turning Things Around

e Problem needs to get smaller when you recurse

e factorial
o The number gets smaller
o Base case at 0

e product
o Second number gets smaller
o Base case at b==0

® reverse
o Size of string gets smaller
o Base case at empty string

