
CIS 122

Recursion Strikes Again

Recursion

● Reducing a problem to a smaller version of itself

● Recursive step
○ How do I reduce my problem?
○ To wash dishes, first wash one dish, then wash the rest
○ x! = x * (x-1)!

● Base Case
○ Where do I stop?
○ When the sink is empty, the dishes are washed
○ 0! = 1

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

 product(a, b) = a + product(a, b-1)

Not-So-Basic Arithmetic

● Base Case
○ product(a, 0) = 0

● Recursive Step
○ product(a, b) = a + product(a, b-1)

Not-So-Basic Arithmetic

● Base Case
○ product(a,0) = 0

● Recursive Step
○ product(a,b) = a + product(a,b-1)

 def product(a,b):
 if b==0:
 return 0
 else:
 return a + product(a, b-1)

Not-So-Basic Arithmetic

● Base Case
○ product(a,0) = 0

● Recursive Step
○ product(a,b) = a + product(a,b-1)

 def product(a,b):
 if b==0:
 return 0
 else:
 return a + product(a, b-1)

● Does it work?
○ Test it!

Not-So-Basic Arithmetic

● Base Case
○ product(a,0) = 0

● Recursive Step
○ product(a,b) = a + product(a,b-1)

 def product(a,b):
 if b==0:
 return 0
 elif b < 0:
 return -1 * product(a, -b)
 else:
 return a + product(a, b-1)

Not-So-Basic Arithmetic Quiz

● Write a recursive power function
○ power(a, b) = a * a * a * ... * a (b times)
○ (don't worry about negative b)

● Steps
○ Define power recursively
○ Come up with a base case
○ Put it into code

Not-So-Basic Arithmetic Quiz

● Write a recursive power function
○ power(a, b) = a * a * a * ... * a (b times)

● Base Case
○ power(a, 0) = 1

● Recursive Definition
○ power(a, b) = a * power(a, b-1)

 def power(a, b):
 if b == 0:
 return 1
 else:
 return a * power(a, b-1)

Turning Things Around

● How would we reverse a string?

Turning Things Around

● How would we reverse a string?

 "ABCDEFG"

Turning Things Around

● How would we reverse a string?
○ What if we knew how to reverse part of it?

 "A"+"BCDEFG"

Turning Things Around

● How would we reverse a string?
○ What if we knew how to reverse part of it?

 "A"+"BCDEFG"

 "GFEDCB"+"A"

Turning Things Around

● How would we reverse a string?
○ What if we knew how to reverse part of it?

● Recursive Step
○ Set aside one letter
○ Reverse the rest of the string
○ Add the letter to the end

 "A"+"BCDEFG"

 "GFEDCB"+"A"

Turning Things Around

● How would we reverse a string?
○ What if we knew how to reverse part of it?

● Recursive Step
○ Set aside one letter
○ Reverse the rest of the string
○ Add the letter to the end

● Base Case
○ The empty string reversed is itself

Turning Things Around

def reverse(string):
 """Returns the reverse of the input string"""
 if string == "":
 return ""
 else:
 firstChar = string[0] # Set aside first char
 rest = string[1:] # Set aside rest of string
 return reverse(rest) + firstChar

Turning Things Around

● Problem needs to get smaller when you recurse

● factorial
○ The number gets smaller
○ Base case at 0

● product
○ Second number gets smaller
○ Base case at b==0

● reverse
○ Size of string gets smaller
○ Base case at empty string

