
CIS 122

A Class of One's Own

Logistics

● Assignment 4
○ Grades Posted
○ Solutions Posted

● Assignment 4 Grades

○ Forgot to give extra credit for guessing game features
○ I'll fix that tonight

● Assignment 5
○ Do the first part now (feel free to ask for help)
○ We'll work on the second part on Friday

Classes

● Custom objects
○ Composed of properties and methods

● Properties store information
○ Coordinates
○ Names

● Methods tell object how to act
○ __init__
○ __repr__

Classes

Class Methods Under the Surface

● Class methods all start with a special argument
○ Generally named "self"
○ Refers to the object calling the method

● What really happens when we call a class method?

○ What happens to that first argument?

Class Methods Under the Surface

class Point:

 def __init(self, x, y):
 <init code>

 def __repr__(self):
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

 def absValue(self):
 return math.sqrt(self.xcor**2 + self.ycor**2)

print p

Class Methods Under the Surface

class Point:

 def __init(self, x, y):
 <init code>

 def __repr__(self):
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

 def absValue(self):
 return math.sqrt(self.xcor**2 + self.ycor**2)

print p.__repr__()

Class Methods Under the Surface

class Point:

 def __init(self, x, y):
 <init code>

 def __repr__(self):
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

 def absValue(self):
 return math.sqrt(self.xcor**2 + self.ycor**2)

print p.__repr__()
print Point.__repr__(p)

Class Methods Under the Surface

● When Python calls a class method
○ The object gets substituted in for the first argument

 p.__repr__() → print Point.__repr__(p)
 p.absVal() → Point.absVal(p)

● The constructor is a little strange
○ But works the same way

Adding up your Points

● How do we add two points?
○ Sum their x coordinates
○ Sum their y coordinates

● For example
○ (1, 3) + (10, 20) = (11, 23)
○ (2, 2) + (-2, -2) = (0, 0)
○ (0, 0) + (0, 0) = (0, 0)

Adding up your Points

● Let's define addition for our Point class

● __add__ method
○ Defines "+" operator for our class
○ Takes two arguments

 def __add__(self, other):

Adding up your Points

● Let's define addition for our Point class

● __add__ method
○ Defines "+" operator for our class
○ Takes two arguments

 def __add__(self, other):
 newX = self.xcor + other.xcor
 newY = self.ycor + other.ycor
 newPoint = Point(newX, newY)
 return newPoint

Comparing Points

● How does Python compare objects?

● Everything boils down to numbers
○ Ints - compare values
○ Floats - compare values
○ Characters - compare ord values
○ Strings - compare characters

● To compare points, we'll need a basis for comparison
○ How would we like to compare two points?

Comparing Points

● Python has special comparison methods
○ __gt__ → >
○ __ge__ → >=
○ __lt__ → <
○ __le__ → <=
○ __eq__ → ==
○ __ne__ → !=

● That's a lot of methods to define
○ It would be nice if we could define just one

Comparing Points

● Python has one method covering all comparisons

● __cmp__(a,b)
○ Takes two arguments
○ Returns a number

■ Negative if a < b
■ Positive if a > b
■ 0 if a == b

● Let's write a __cmp__ method for our point class

Get the Point

● We now have a functioning Point class
○ Constructor
○ Representation
○ Distance from origin
○ Addition
○ Comparison

● We could add more functionality
○ Depends on what we're using it for

Representing a Student

● Suppose I was writing a grading program

● I might want a student class
○ Keep track of students scores
○ Calculate grades

● What properties should a student have?

Representing a Student

● Student Class

● Properties
○ Name
○ Grades

● Methods
○ Add grade
○ Calculate average grade
○ Get letter grade

Representing a Student

● Let's start at the beginning

● Define a student class
○ With a student constructor

● What information do we need to make a student?

● What information do we want our student to store?

Representing a Student

class Student:

 def __init__(self, studentName):
 self.name = studentName
 self.grades = []

Representing a Student

● Now let's print out our student
○ What should a student look like?

 def __repr__(self):
 return self.name

Representing a Student

● Now we can make students and display students

● Let's add some functionality
○ addGrade
○ averageGrade
○ letterGrade

Student Class So Far...

class Student:

 def __init__(self, studentName):
 self.name = studentName
 self.grades = []

 def __repr__(self):
 return self.name

 def addGrade(self, grade):
 self.grades.append(grade)

