CIS 122

Final Review

Logistics

- Course Evaluations
- Fill them out by Wednesday
- Feedback on lack of textbook
- Assignment 5
- Some assignments submitted
- Assignment help after class
- Final times
- Wednesday 2:00-4:00
- Friday 3:15-5:15

Types

- Integers
- Floats
- Strings
- Booleans
- Lists
- Nested Lists
- Dictionaries

Programming Concepts

- Variables
- Functions
- Conditionals
- Recursion
- Iteration
- Nested Loops
- Classes

Types - Integers

- Numbers (without a decimal point)
- 1
- 42
- - 7
- Integer operations return integer results
- $1+1 \rightarrow 2$
- 2 * $3 \rightarrow 6$
- Watch out for integer division!
- $10 / 5 \rightarrow 2$
- $11 / 5 \rightarrow 2$

Types - Floats

- Numbers (with a decimal point)
- 1.5
- 42.0
- - 7 .
- Operations involving floats return floats

$$
\begin{aligned}
& \circ 1+1.5 \rightarrow 2.5 \\
& \circ 2 * 3.0 \rightarrow 6.0
\end{aligned}
$$

- Useful for float division
- $10 / 5.0 \rightarrow 2.0$
- 11 / 5.0 / 2.5

Types - Strings

- Sequences of characters (surrounded by quotes)
- 'abc'
- "Hello World"
o '5'
- We can index into them
- "abcdefg"[3] \rightarrow 'd'
- "abcdefg"[-2] \rightarrow ' f '
- We can slice them
- "abcdefg"[$2: 5$] \rightarrow 'cde'
- "abcdefg"[3 :] \rightarrow 'defg'

Types - Strings (new!)

- We can iterate over them
for char in string: print char
otherString = ""
for \mathbf{i} in range(len(string)): otherString $+=$ string $[i]$
- We CAN'T modify them (strings are immutable)
- string[3] = 'a'
- string.append('a')

Types - Booleans

- Only two values
- True
- False
- Generate from tests (>, >=, <, <=, ==, !=)
- $4<5 \rightarrow$ True
\circ 'x' in 'abcde' \rightarrow False
- Combine with logical connectives (and, or, not)
- True and False \rightarrow False
- True or False \rightarrow True
- not True \rightarrow False

Types - Booleans

- We can use them as conditions
- if, elif, else statements
if $x<5$:
return 1
else:
return -1
- while loops
while $x<5$:
print \mathbf{x}
$x+=1$

Types - Lists

- Sequences of arbitrary elements
- [1, 2, 3]
- ['a', True, 42]
- We can index into them
- [10, 20, 30, 40, 50] [2] $\rightarrow 30$
$\circ[10,20,30,40,50][-2] \rightarrow 40$
- We can slice them
- [10, 20, 30, 40, 50] [$2: 4$] \rightarrow [30, 40]
$\circ[10,20,30,40,50][: 3] \rightarrow[10,20,30,40]$

Types - Lists

- We can modify them
- L [2] = 100
- L.append(100)
- We can iterate over them
for b in [True, True, False, True]:
if $b==$ False:
return False
return True
for \mathbf{i} in range(10): print i

Types - Lists

- We can nest them
nestedList $=[$ [10, 20, 30, 40],
[11, 21, 31, 41],
[12, 22, 32, 42],
[13, 23, 33, 43]]
nestedList [2] \rightarrow [12, 22, 32, 42]
nestedList [2][3] \rightarrow [42]

Types - Dictionaries

- Lists with arbitrary keys
- letterCount = \{ 'a':5, 'b':7, 'c':2 \}
- sillyDict $=\{0: 0,1: 1,2: 2\}$
- We can index dictionaries by keys
- letterCount ['a'] $\rightarrow 5$
- We can modify entries in dictionaries (they are mutable)
- letterCount ['a'] = 4
- letterCount ['c'] += 1
- We can add elements to dictionaries (they are mutable)
- letterCount['d'] = 3

Types - Collections

- Three collection types
- Strings
- Lists
- Dictionaries
- Can test whether an element is present with in keyword - 'a' in 'abcde' \rightarrow True
$\circ 5$ in [0, 1, 2] \rightarrow False
- 'rabbit' in \{'cat':True, 'dog':False\} \rightarrow False
- Search through keys
- Can get size of collection with len function
$\circ \operatorname{len}([0,1,2]) \rightarrow 3$

