h)

Debugging

is like science
in a slightly wacky universe

UNIVERSITY OF OREGON Image: Pill bug, Pacific Northwest National Laboratory

O

Debugging ‘
Testing is for revealing bugs

So you succeeded: Your program failed.
Now what?

Debugging is for understanding and repairing
bugs

O

UNIVERSITY OF OREGON

First things first

Start with effective approach and discipline

» A skilled, disciplined debugger with no tools will beat a
haphazard debugger with the best tools available

Then: supporting tools

» Observability, controllability, and automation make
debugging tasks more efficient

» Differences are sometimes dramatic

UNIVERSITY OF OREGON

O

Form an argument

Debugging starts from a correctness argument:
How your program was supposed to work, and
why it should have worked correctly

You are looking for the flaw in the argument.

If you don’t have a correctness argument ...

* Congratulations, you’ve found the bug. The bug is that
you don’t have a correctness argument. i

UNIVERSITY OF OREGON Image: Living bug drawing, Giantbomb

O

The theory of your program

The correctness argument is a theory of how
your program works

* Devise experiments (tests) as you would for a scientific
theory: Predict something that a test can disconfirm

» (Dis)confirm specific parts of the correctness argument.
The structure of the argument guides debugging

Possible bugs are alternative theories

— If you suspect bug X, your goal is not to fix it, but to distinguish
between two theories: “My program has bug X” or “that part
of my correctness argument is sound”

O

UNIVERSITY OF OREGON

If you ask for help debugging ...

| will ask you ...
What is your program doing?
What should it be doing?
How is it supposed to work?

| am asking for your correctness argument, and the
deviation you have observed.

O

UNIVERSITY OF OREGON

Observe

We make observations of three kinds:

Assumption: | know x (but let’s just check)
Conjecture: It seems like y (but is it really?)

Hypothesis: If it works like m,
then we should see z

We start with a model of how the program
should work ... what should we see?

O

UNIVERSITY OF OREGON

Anomaly

We expected to see something

something consistent with our mental model of how
the program was supposed to work

We saw something else

an anomaly ... something that shouldn’t happen if
the program worked as we thought it should

» To see the anomaly, you must know what you expected to
see. The anomaly is valuable because it breaks part of
your theory, and demands an explanation.

UNIVERSITY OF OREGON

O

Conjecture

That was weird ...

... but it could happen if the flozzle
was rerouted through the bargistator

Physicians, auto mechanics, and expert
debuggers conjecture explanations based
on their understanding of how systems

A (bodies, cars, programs) work.

" Scientists too.

O

UNIVERSITY OF OREGON Image: Mike Libby, Insect Lab Studio
(http://insectlabstudio.com)

Hypothesis Testing

The new windshield was brilliant, but within a few days it was foggy
again. The haze is on the inside, ...

TOM: The other possibility is that your heater core is leaking. If the
heater core has a hole in it, the haze on your windshield could be
a thin film of coolant.

RAY: If it's coolant, it would have certain characteristics. It would
be greasy to the touch. It would smell sweet. And it would likely be
thicker at the bottom of the windshield, near where the vents are.
TOM: So try a couple of experiments. Try removing the seat covers

for a week, and see what happens. If that fixes it, your son may
need to go commando -- without his seat covers.

Car Talk, May 2009

O

UNIVERSITY OF OREGON

When my bicycle makes a noise ...

| listen ...
Does it happen only when I’'m pedaling?
Does it happen only when I’'m moving?
Only in hills? Only in the big ring?
Only when I’'m seated?
Faster and slower depending on my speed?
Faster and slower depending on cadence?

These are observations that can confirm some
causes and and eliminate others.

O

UNIVERSITY OF OREGON

Step by step

Make observations to confirm correct execution
based on your correctness argument
Observe anomalies
Conjecture possible causes
Develop conjectures into hypotheses
observe to (dis)confirm your theory

When stuck, check assumptions

O

UNIVERSITY OF OREGON

Observability

We see a failure that may be far away (in time and space) from
the error that caused it. We need to observe the chain of events.

LexPal
Data structure

corrupted here ...

Java .java

Messages.pri ... caused method
here to return null
pointer ... — -

qui tests

Java .java .java .java

Action.java CharClasses.java
— -

Jjava .java

CountEmitter.java DFA.java

CharClas...ption.java CharClassinterval ‘SetE...erator.java
... dereferenced here,

triggering null N
pointer exception.

javal |java javal |l.java

Emitter.java EOFActions.java ErrorMessages.java Generato...ption.java

—_— o~

Observing... low tech approach

Insert print statements
Make them self-identifying
Consider what you expect, so anomalies are obvious

Avoid “sipping from the firehose”

Print jUSt enough to confirm or contradict your
conjectu re (you have one, right?)

Reduce, reduce, reduce the test case

UNIVERSITY OF OREGON

O

assert cool && useful: whynot

Many languages have an assertion facility

In java:

assertp:m

which is like

if (! p) { throw new AssertionError(m); }

Document your correctness argument with
assertions to make mistakes observable

O

UNIVERSITY OF OREGON

Observing ... high tech approach

Development tools like Eclipse include
debugging support
Breakpoints (stop here, look around)
Watchpoints (like temporary print statements)
Single-stepping
State inspection (including activation stack)

Very useful ... with a systematic approach

* A good cook sharpens his knives, but sharp knives
won’t make you a good cook

UNIVERSITY OF OREGON

O

Challenges to Observability

Concurrency (threading)

* Schedule decisions (context switches) are both invisible
and uncontrolled. Failure can appear random.
* Approaches
» Observe invariants, not context switches
» Force context switches (to trigger more failures)
» High-tech: control context switches

Distribution, host-target development

— The problems of threading, plus real concurrency, plus
unexpected differences between development and
deployment environments ... hard even with good tools

O

UNIVERSITY OF OREGON

Controllability

def: Ability to perform the experiment you want

Tools: single-step, “programming at the break”,
calling methods in isolation, watchpoints ...

Also depends on architectural design of system

— Good interfaces provide control for debugging

— Large systems often invest heavily in test & debug
infrastructure as part of design and implementation

— Example: database dump/restore in editable format

O

UNIVERSITY OF OREGON

Can the debugging process be
automated?

Some attempts to narrow the causes of failure:

Systematically reduce test input
Systematically reduce set of recent program changes
... (binary searches to narrow causes)

Not widely used yet ... but maybe soon?
See: Andreas Zeller, Why Programs Fail
http://www.whyprogramsfail.com/

UNIVERSITY OF OREGON

O

Anti-patterns of debugging

Random program changes

* That is “programming by magic” ... and it turns a
slightly broken program into a total wreck

* But changes to observe effects can be useful, as well as
replacing mystery code by something simpler
Massive data dump
* Useful information is lost in the flood. Better to print
selectively, with useful abstractions
Jumping to conclusions

* Don’t skip the experiment: Predict a behavior and
observe it

UNIVERSITY OF OREGON

O

Make debugging easier

Build and test incrementally

* Makes bugs smaller and more local
Trim failing test cases

* Make observation and diagnosis easier
Program defensively

* Make your programs crash grandly every time, instead
of mostly working most of the time

* Make your program crash as soon as its wrong, not
later. assert(...) is an excellent tool for this.

UNIVERSITY OF OREGON - CIS422/522 W 20

O

O

Learn from every bug

What did | do wrong?
How could | have prevented it?
What can | look for to identify this kind of bug?

— Example: Corrupting data structures, failing to lock a shared
structure (in threaded code), accepting mal-formed input, ...

Build your mental database of bug patterns
and build your systematic debugging skills

Image: Monty Python's Flying Circus

UNIVERSITY OF OREGON - CIS 422/522
Bicycle Repair Person

Debugging is a key skill

As long as programs are written by people,
debugging will be part of programming

It’s worth learning to do it well.

The basic methods are used across disciplines
* In medicine: Disease diagnosis
* In auto repair: Fault diagnosis
* In science: Theory building
* In teaching: Explanation (broken model diagnosis)

If you learn to debug well, you'll use it in surprising
ways.

O

UNIVERSITY OF OREGON - CIS422/522 W 20

