
1

Turtle Graphics for Python

Idea
You have a small turtle that moves around the screen.

As it moves, it leaves a trail.

You can tell it to hold its pen up and then it moves
wihtout leaving a trail.

Pen down lets it resume making a visible trail.

It can turn left or right. When you next tell it to move,
it goes in the direction it faces.

Using Turtle Graphics in Python

Define your turtle functions before using
them.

This line goes first in your program:

from turtle import *

Move the turtle:
Move the turtle forward 100 units:
forward(100)

Move the turtle back 20 units:
back(20)

Turn the turtle:
Turn the turtle right 90 degrees:
right(90)

Turn the turtle left 45 degrees:
left(45)

Pen up (no trail), Pen Down (trail)
pendown – turtle moves without a trail on screen
pendown()

penup – turtle moves showing a trail on screen
penup()

Remember the principle

Define first, then use

You also :

Import first, then use

Degree Facts
90 degrees = a right turn, such as in a square
45 degrees = a diagonal across a square
360 degrees = go full circle to back where you started

penup() # leave no trail
forward(20) # move 20 steps

pendown() # moves will now show
forward(30) # leave a line on screen

2

Our Python program:

Move Turtle without drawing a line
move 40, no line:
penup()
forward(40)
pendown()

Define a function to move turtle
without drawing a line
def move_turtle(distance):
 ''' Move turtle, no line drawn '''
 penup()
 forward(distance)
 pendown()

Use move_turtle function (defined above)
move_turtle(15)
or
this_far = 20
move_turtle(this_far)

Draw a circle, radius 75:

circle(75)

Add some color
Color the lines red, the area fill yellow
color("red", "yellow")
forward(100) # line is red

Fill a closed area with yellow
color("red", "yellow")
begin_fill()
draw square
for i in range(4):
 forward(100)
 right(90)
end_fill() # now yellow fills square

Results on the screen:

3

from turtle import *

def draw_square(side):
 ''' Draw a square
 length is side units long
 '''
 # repeat 4 times
 for i in range(4):
 forward(side)
 right(90)
 return

...

draw_square(150)

...

size = 175
draw_square(size)

Here's one way to draw a square with Turtle Graphics.

Notice that a square has 4 sides and it turns right
90 degrees, or 1/4th of 360 degrees.

Can you create a similar function definition that will
draw a polygon with n sides, each of length side?

Hint:

Give the new function a name such as
draw_poly, then decide on what inputs it needs.

Figure out changes to the function.

Test.

Can you draw a polygon of 4 sides? 6 sides? 8 sides
(like a stop sign)?

Control Speed of Drawing

speed(1) # slowest speed

speed(10) # fast

You can use numbers from 1 to 10 to get the speed you
want; you see the little "turtle" while it draws.

Fastest - but no turtle animation

speed(0) # best for very complex
 # drawings

For a lot more detail on Turtle Graphics, go to
http://docs.python.org/release/3.2/library/turtle.html

Start a fresh drawing, turtle in standard
starting location and direction

reset() # Start a fresh drawing
 # Erases any drawing on screen

It's a good idea to do a reset()
before doing any drawing.
Gives you a clean start.

4

Macs - set up for Turtle Graphics

We need to run
IDLE -n

Running IDLE -n prevents some problems
with Turtle Graphics

Open Terminal, set it aside for a moment

Finder (in Dock)
Go to Applications
Go to Python 3.2 folder

Right-click (or Control-Click) on IDLE.app

Choose Show package contents

Look in MacOS folder

Drag IDLE icon to Terminal window

Add -n to the end of /IDLE

Your terminal window now says
Long-path-to-IDLE -n

You now see a
No Subprocess
note with the IDLE start-up screen

As you normally do, go to
IDLE's File menu,

New Window

Now you can create your graphic.py program using
Turtle Graphics, and you will see it all correctly.

