
ar
X

iv
:0

90
7.

20
72

v2
 [

cs
.S

E]
 1

3
Ju

l 2
00

9

SMT-Based Bounded Model Checking for Embedded ANSI-C Software

Lucas Cordeiro
University of Southampton
lcc08r@ecs.soton.ac.uk

Bernd Fischer
University of Southampton
b.fischer@ecs.soton.ac.uk

Joao Marques-Silva
University College Dublin

jpms@ucd.ie

Abstract

Propositional bounded model checking has been
applied successfully to verify embedded software but
is limited by the increasing propositional formula size
and the loss of structure during the translation. These
limitations can be reduced by encoding word-level
information in theories richer than propositional logic
and using SMT solvers for the generated verification
conditions. Here, we investigate the application of dif-
ferent SMT solvers to the verification of embedded soft-
ware written in ANSI-C. We have extended the encod-
ings from previous SMT-based bounded model checkers
to provide more accurate support for finite variables,
bit-vector operations, arrays, structures, unions and
pointers. We have integrated the CVC3, Boolector, and
Z3 solvers with the CBMC front-end and evaluated
them using both standard software model checking
benchmarks and typical embedded applications from
telecommunications, control systems and medical de-
vices. The experiments show that our approach can
analyze larger problems and substantially reduce the
verification time.

1. Introduction

Bounded Model Checking (BMC) based on Boolean
Satisfiability (SAT) has been introduced as a com-
plementary technique to Binary Decision Diagrams
(BDD’s) for alleviating the state explosion problem [1].
The basic idea of BMC is to check (the negation
of) a given property at a given depth: given a tran-
sition system M, a property φ, and a bound k, BMC
unrolls the system k times and translates it into a
verification condition ψ such that ψ is satisfiable if
and only if φ has a counterexample of depth less
than or equal to k. Standard SAT checkers can be
used to check if ψ is satisfiable. In order to cope
with increasing system complexity, SMT (Satisfiability
Modulo Theories) solvers can be used as back-ends for

solving the verification conditions generated from the
BMC instances [2], [3], [4], [5]. In SMT, predicates
from various (decidable) theories are not encoded by
propositional variables as in SAT, but remain in the
problem formulation. These theories are handled by
dedicated decision procedures. Thus, in SMT-based
BMC, ψ is a quantifier-free formula in a decidable
subset of first-order logic which is then checked for
satisfiability by an SMT solver.

In order to reason about embedded software accu-
rately, an SMT-based BMC must consider a number
of issues that are not easily mapped into the theories
supported by SMT solvers. In previous work on SMT-
based BMC for software [2], [3], [5] only the theories
of uninterpreted functions, arrays and linear arithmetic
were considered, but no encoding was provided for
ANSI-C [6] constructs such as bit operations, floating-
point arithmetic, pointers (e.g., pointer arithmetic and
comparisons) and unions. This limits its usefulness
for analyzing and verifying embedded software written
in ANSI-C. In addition to that, the SMT-based BMC
approach proposed by Armando et al. [2], [5] does
not support the checking of arithmetic overflow and
does not make use of high-level information to simplify
the unrolled formula. We address these limitations by
exploiting the different background theories of SMT
solvers to build an SMT-based BMC tool that precisely
translates program expressions into quantifier-free for-
mulae and applies a set of optimization techniques to
prevent overburdening the solver. This way we achieve
significant performance improvements over SAT-based
BMC and previous work on SMT-Based BMC.

This work makes two major novel contributions.
First, we provide details of an accurate translation from
ANSI-C programs into quantifier-free formulae. Sec-
ond, we demonstrate that the new approach improves
the performance of software model checking for a wide
range of embedded software systems. Additionally, we
show that our encoding allows us to reason about
arithmetic overflow and to verify programs that make

use of bit-level, pointers, unions and floating-point
arithmetic. We also use three different SMT solvers
(CVC3, Boolector and Z3) in order to check the
effectiveness of our encoding techniques. To the best
of our knowledge, this is the first work that reasons
accurately about ANSI-C constructs commonly found
in embedded software and extensively applies SMT
solvers to check the verification conditions emerg-
ing from the BMC of embedded software industrial
applications. We describe the ESW-CBMC tool that
extends the C Bounded Model Checker (CBMC) [7]
to support different SMT solvers in the back-end and
to make use of high-level information to simplify
and reduce the unrolled formula size. Experimental
results obtained with ESW-CBMC show that our ap-
proach scales significantly better than both the CBMC
model checker [7] and SMT-CBMC, a bounded model
checker for C programs that is based on the SMT
solvers CVC3 and Yices [2], [5].

2. Background

ESW-CBMC uses the front-end of CBMC to gener-
ate the verification conditions (VCs) for a given ANSI-
C program. However, instead of passing the VCs to
a propositional SAT solver, we convert them using
different background theories and pass them to an SMT
solver. In this section, we describe the main features
of CBMC and present the background theories used in
the rest of the paper.

2.1. C Bounded Model Checker

CBMC implements BMC for ANSI-C/C++ pro-
grams using SAT solvers [7]. It can process C/C++
code using the goto-cc tool [8], which compiles the
C/C++ code into equivalent GOTO-programs using
a gcc-compliant style. Alternatively, CBMC uses its
own, internal parser based on Flex/Bison, to process
the C/C++ files and to build an abstract syntax tree
(AST). The typechecker annotates this AST with types
and generates a symbol table. CBMC’s IRep class then
converts the annotated AST and the C/C++ GOTO-
programs into an internal, language-independent for-
mat used by the remaining phase of the front-end.

CBMC derives the VCs using two recursive func-
tions that compute the assumptions or constraints
(i.e., variable assignments) and properties (i.e., safety
conditions and user-defined assertions). CBMC’s VC
generator (VCG) automatically generates safety condi-
tions that check for arithmetic overflow and underflow,
array bounds violations and null-pointer dereferences.
Both functions accumulate the control flow predicates

to each program point and use that to guard both the
constraints and the properties, so that they properly
reflect the program’s semantics.

Although CBMC implements several state-of-the-art
techniques for propositional BMC, it still has the fol-
lowing limitations [2], [3]: (i) large data-paths involv-
ing complex expressions lead to large propositional
formulae, (ii) high-level information is lost when the
verification conditions are converted into propositional
logic, and (iv) size of the encoding increases with the
size of the arrays used in the program.

2.2. Satisfiability Modulo Theories

SMT decides the satisfiability of first-order formulae
using the combination of different background the-
ories and thus generalizes propositional satisfiability
by supporting uninterpreted functions, arithmetic, bit-
vectors, tuples, arrays, and other decidable first-order
theories. SMT solvers are decision procedures for
certain theories: given a decidable theory T and a
quantifier-free formula ψ, they check whether ψ is
satisfiable in T or not, or equivalently, whether T ∪{ψ}
is satisfiable. Given a set Γ∪{ψ} of formulae over T ,
we say that ψ is a T -consequence of Γ, and write
Γ |=T ψ, if and only if every model of T ∪Γ is also a
model of ψ. Checking Γ |=T ψ can be reduced in the
usual way to checking the T -satisfiability of Γ∪{¬ψ}.

In SMT-based bounded model checking, we unroll
the transition system M and the property ψ (which
is to be checked in T), yielding Mk and ψk respec-
tively, and pass these to an SMT solver to check
Mk |=T ψk [3]. The solver will always terminate
with a satisfiable/unsatisfiable answer. If the answer is
satisfiable, we have found a violation of the property
ψ. If it is unsatisfiable, the property ψ holds in M up
to the given bound k.

State-of-the-art SMT solvers support not only the
combination of different decidable theories, but also
the integration of SAT solvers in order to speed up the
performance. Furthermore, they often also integrate a
simplifier which applies standard algebraic reduction
rules before bit-blasting (i.e., replacing the word-level
operators by bit-level circuit equivalents) propositional
expressions to a SAT solver. Background theories vary
but the SMT-LIB initiative aims at establishing a
common standard for the specification of background
theories [9]. However, most SMT solvers provide
functions in addition to those specified in the SMT-
LIB. Therefore, we describe here all the fragments that
we found in the SMT solvers CVC3, Boolector and
Z3 for the theory of linear, non-linear, and bit-vector

arithmetic [10], [11], [12]. We summarize the syntax
of these background theories as follows:

Fml ::= Fml con Fml | ¬Fml | Atom
con ::= ∧ | ∨ | ⊕ | : | ⇔

Atom ::= Trm rel Trm | Id | true | false
rel ::= < | ≤ | > | ≥ | = | (=

Trm ::= Trm op Trm | Const | Id | Extract [i, j]
| SignExt [k] | ZeroExt [k]
| ite (Fml , Trm ,Trm)

op ::= +o,u | −o,u | ∗o,u | /o | rem
| << | >> | & | | | ⊕ | @

In this grammar Fml denotes Boolean-valued expres-
sions, Trm denotes integers, reals, and bit-vectors while
op denotes binary operators. The semantics of the
relational operators (i.e., <, ≤, >, ≥), the non-linear
arithmetic operators (i.e., ∗, /, rem) and the right-
shift operator (>>) depends on whether the program
variables are unsigned or signed bit-vectors, integers
or real numbers. The expression Extract [i, j] denotes
bit-vector extraction from bits i down to j to yield a
new bit-vector of size i−j+1 while @ denotes the con-
catenation of the given bit-vectors. SignExt [k] extends
the bit-vector to the signed equivalent bit-vector of size
w + k, where w is the original width of the bit-vector,
while ZeroExt [k] extends the bit-vector with zeros to
the unsigned equivalent bit-vector of size w + k. The
conditional expression ite (Fml , Trm,Trm) takes as
first argument a Boolean formula and depending on its
value, selects either the second or the third argument.
The indexes o and u in the operators +, −, ∗ and /
denote predicates that check if the bit-wise addition,
subtraction, multiplication and division overflow and
underflow respectively. The operator rem denotes the
signed or unsigned remainder.

The array theories of SMT solvers are typically
based on the two McCarthy axioms [28]. Let a be an
array, i and j be integers and v be a value. The function
select(a,i) denotes the value of array a at index i and
store(a,i,v) denotes an array that is exactly the same as
array a except that the value at index position i is v (if
i is within the array bounds). Formally, the functions
select(a,i) and store(a,i,v) can then be represented by
the following two axioms [10], [11], [12]:

(i = j:select (store (a, i, v) , j) = v)

(i (= j:select (store (a, i, v) , j) = select (a, j))

The first axiom asserts that the value selected at index
j is the same as the last value stored to the index i, if
the two indices i and j are equal. The second axiom
asserts that storing a value to index i, does not change
the value at index j, if the indices i and j are different.

Tuples are used to model the ANSI-C unions and
struct datatypes. They provide store and select op-
erations similar to those in arrays, but working on
the tuple elements. Hence, the expression select(t,f)
denotes the field f of tuple t while the expression
store(t,i,v) denotes that tuple t at field f has the value
v and all other tuple elements remain the same.

3. ESW-CBMC

This section describes the main software compo-
nents that are integrated into the SMT-based back-end
of CBMC and the encoding techniques that we used to
convert the constraints and properties from the ANSI-
C embedded software into the background theories of
the SMT solvers.

3.1. SMT-based CBMC Back-End

Figure 1 shows the new back-end of CBMC in order
to support the SMT solvers CVC3, Boolector and Z3.
The gray boxes represent the components that we mod-
ified/included in the back-end of CBMC. We reused the
front-end completely unchanged, i.e., we process the
constraints and properties that CBMC’s VCG generates
for the unrolled C program in single static assignment
(SSA) form. However, we implemented a new pair
of encoding functions for each supported SMT solver
and let the user select between them. The selected
functions are then used to encode the given constraints
and properties into a global logical context, using the
background theories supported by the selected SMT
solver. Finally, we invoke this solver to check the
satisfiability of the context formula.

B M C S e l e c t
S M T s o l v e r

c o n v e r t c o n t r a i n t s

c o n v e r t p r o p e r t i e s

L o g i c a l
C o n t e x t

I n te rp re t
c o u n t e r - e x a m p l e

S M T
s o l v e r

P r o p e r t y
h o l d s u p t o
b o u n d k

P r o p e r t y
v i o l a t i on

Figure 1. Overview of the SMT-based CBMC
Back-end.

Formally, we build two sets of quantifier-free formu-
lae C (for the constraints) and P (for the properties)
such that M (|=kC∧¬P if and only if the property P
holds in the model M up to the bound k. If not, we
have found a violation of the property P . However,
this approach can be used only to find violations of the
property up to the bound k and not to prove properties.
For software verification, in order to prove properties

we need to compute the completeness threshold to
determine the maximum number of loop-iterations
occurring in the program [23], [13]. Worst-case exe-
cution time (WCET) tools can be used to compute the
completeness threshold by means of static analysis of
loop structures. The WCET essentially indicates the
maximum number of loop-iterations and as a result
CBMC and ESW-CBMC adopt this approach to com-
pute the maximum bound of the program. However,
in practice, complex software programs involve large
data-paths and complex expressions. Therefore, the
resulting formulae become harder to solve and require
substantial amounts of memory to build. Thus, for
complex software programs, we can only ensure that
the property holds in M up to a bound k.

We use the code in Figure 2 as a running example
to illustrate the process to transform a given ANSI-C
code into SSA form and after that into the quantifier-
free formulae C and P (as shown in (1) and (2)). It
is important to note that the code of Figure 2(a) is a
syntactically valid C program, but it writes accidentally
to an address outside the allocated memory region of
the array a (line 6). Hence, in order to reason about
this C program, seven VCs are generated as follows:
the first six VCs check the lower and upper bound of
array a in lines 4, 6 and 7 respectively and the last VC
checks the assert macro defined by the user in line 7.
However, before actually checking the properties, the
front-end of CBMC performs a set of transformations
and converts the program into SSA form. As a result,
the original C program in Figure 2(a) is then converted
into SSA form that only consists of if instructions,
assignments and assertions as shown in Figure 2(b).

1 i n t main () {
2 i n t a [2] , i , x ;
3 i f (x ==0)
4 a [i] = 0 ;
5 e l s e
6 a [i +2]=1 ;
7 a s s e r t (a [i + 1] = = 1) ;
8 }

(a)
1 g1 == (x1 == 0)
2 a1 == (a0 WITH [i 0 : = 0])
3 a2 == a0
4 a3 == (a2 WITH [2+ i 0 : = 1])
5 a4 == (g1 ? a1 : a3)
6 t 1 == (a4 [1+ i 0] == 1)

(b)

Figure 2. (a) A C program with violated property.
(b) The C program of (a) in SSA form.

C :=

g1 := (x1 = 0)
∧ a1 := store(a0, i0, 0)
∧ a2 := a0

∧ a3 := store(a2, 2 + i0, 1)
∧ a4 := ite(g1, a1, a3)

(1)

P :=

i0 ≥ 0 ∧ i0 < 2
∧ 2 + i0 ≥ 0 ∧ 2 + i0 < 2
∧ 1 + i0 ≥ 0 ∧ 1 + i0 < 2
∧ select(a4, i0 + 1) = 1

(2)

From this, we build the constraints and properties
formulae shown in (1) and (2). We use additional
boolean variables (called definition literals) for each
clause of the formula P in such a way that the
definition literal is true iff a given clause of the formula
P is true. Hence, in the example we add a constraint
for each clause of P as shown in (3):

l0 ⇔ i0 ≥ 0

l1 ⇔ i0 < 2
...

l6 ⇔ select(a4, i0 + 1) = 1 (3)

We then rewrite (2) as:

¬P := ¬l0 ∨ ¬l1 ∨ . . . ∨ ¬l6 (4)

It is also important to point out that we simplify
the formulae C and P by using local and recursive
transformations in order to remove functionally redun-
dant expressions and redundant literals. Finally, the
resulting formula C∧¬P is passed to an SMT solver to
check satisfiability. This is different to the approach by
Armando et al. [2], [5] who build two sets of quantifier-
free formulae C and P and check whether C |=T

∧

P
using an SMT solver. Moreover, they transform the C
code into conditional normal form instead of single
static assignment form as we do in this work.

As mentioned in Section 2.2, modern SMT solvers
provide ways to model the program variables as bit-
vectors or as elements of a numerical domain (e.g., Z,
R). If the program variables are modelled as bit-vectors
of fixed size, then the result of the analysis can be
precise (w.r.t. the ANSI-C semantics) depending on the
size considered for the bit-vectors. On the other hand,
if the program variables are modelled as numerical
values, then the result of the analysis is independent
from the actual binary representation, but the analysis
may not be precise when arithmetic expressions are
involved. For instance, the following formula is valid

in numerical domains such as Z or R:

(a > 0 ∧ b > 0) : (a + b > 0) (5)

However, it does not hold if a and b are interpreted as
bit-vectors of fixed-size, due to possible overflow in
the addition operation (Section 3.3 explains how we
encode arithmetic overflow). In our benchmarks, we
noted that the majority of VCs are solved faster if we
model the basic datatypes as integer and/or real. There-
fore, we have to trade off speed and accuracy which
might be two competing goals in formal verification
using SMT solvers. Speed results from the omission
of detail in the original C program, whereas accuracy
results from the inclusion of detail. When encoding the
constraints and properties of C programs into SMT, we
allow the verification engineer to decide the way to
model the basic data types (i.e., as integer/real values
or as bit-vectors) through a run-time option of ESW-
CBMC.

3.2. Code Optimizations

The ESW-CBMC tool implements some standard
code optimization techniques such as constant folding
and forward substitution [14]. We observe that there
is a representative number of embedded applications
in which these optimization techniques make a signif-
icant impact on the performance of the tool. Constant
folding, which is implemented in the front-end allows
us to replace arithmetic operations involving constants
by other constants that represent the result of the oper-
ation. Figure 3 shows an example of constant folding
when applied to the cyclic redundancy check algorithm
extracted from the SNU Real-Time benchmark [15].

1 f o r (j =0 ; j <=255; j ++) {
2 i c r c t b [j]= i c r c 1 (j <<8,(uchar) 0) ;
3 r c [j] = (uchar) (i t [j &0xF]<<4 | i t [j >>4]);
4 }

Figure 3. Code fragment of cyclic redundancy
check.

The right hand side of the expressions in line 2
and 3 are replaced by the corresponding constants
since the value of the variable j and all elements of
array it (where it is an array of constants) are known
at verification time. As a result, we can encode the
expressions in line 2 and 3 by using only the function
store of the SMT solvers (note that the function icrc1
receives two arguments and returns another element
of type unsigned char). We also observed that there
are several embedded applications that repeat the same

expression many times at different places. The value
of the operands in the expression does not change in
between the two evaluations of that expression and can
thus be forward substituted. Figure 4 shows an example
of the forward substitution technique when applied to
the Fast Fourier Transform algorithm extracted again
from the SNU Real-Time benchmark [15].

1 t yp ede f s t r u c t {
2 f l o a t r e a l , imag ;
3 } complex ;
4 complex x [1 0 2 4] , ∗ x i ;
5 f o r (l e =n / 2 ; l e >0; l e / = 2) {
6 . . .
7 f o r (j =0 ; j<l e ; j ++) {
8 . . .
9 f o r (i = j ; i<n ; i = i +2∗ l e) {

10 x i = x + i ;
11 . . .
12 }
13 }
14 }

Figure 4. Code fragment of fast fourier transform.

The right hand side of the assignment in line 10 is
repeated according to the bound used to model check
this program. This occurs because the most outer for
loops (lines 5-14 and lines 7-13) invoke the most inner
for loop (lines 9-12) n times (where n represents the
unwinding bound) and the address of the array x also
does not change inside the loops. For instance, if the
bound is set to 1024, then the expression x + i that is
assigned to the xi pointer index is repeated 1024 times
(note that this expression involves pointer arithmetic).
As a result, we include all expressions into a cache so
that when a given expression is processed again in the
program, we only retrieve it from the cache instead of
creating a new set of variables.

3.3. Encodings

3.3.1. Scalar Data Types. We provide two approaches
to model unsigned and signed integer data types, either
as the integers provided by the corresponding SMT-
lib theories or as bit-vectors, which are encoded using
a particular bit width such as 32 bits. The relational
operators (e.g., <, ≤, >, ≥), arithmetic operators
(e.g., +, −, /, ∗, rem) and right-shift are encoded
depending on whether the operands are unsigned or
signed bit-vectors, integer or real numbers. We support
all type casts, including conversion between integer
and floating-point types. From the front-end’s point of
view, there are six scalar datatypes: bool, signedbv,
unsignedbv, fixedbv, floatbv and pointer. At this point

in time, we only support fixed-point arithmetic (i.e.,
fixedbv) for double and float instead of floating-point
arithmetic (i.e., floatbv).

The ANSI-C datatypes int, long int, long long
int, char are considered as signedbv with differ-
ent bit width (depending on the machine architec-
ture) and the unsigned version of these datatypes are
considered as unsignedbv. The conversions between
signedbv, unsignedbv and fixedbv are performed using
the world-level functions Extract [i, j], SignExt [k]
and ZeroExt [k] (described in Section 2.2). Similarly,
upon dereferencing, the object that the pointer points
to is converted using the same word-level functions.
The datatype bool is converted into signedbv and
unsignedbv using ite . In addition, signedbv and un-
signedbv are converted into bool using the operator (=
by comparing the variable to be converted with zero.
Formally, let v be a variable of signed type, k be a
constant whose value is zero matching the type of v
and let t be a boolean variable such that t ∈ {0, 1}.
We then convert v into t as follows:

t =

{

v = k → 0,
v (= k → 1

(6)

3.3.2. Arithmetic Overflow and Underflow. Arith-
metic overflow and underflow are frequent sources
of bugs in embedded software. ANSI-C, like most
programming languages, provides basic data types that
have a bounded range defined by the number of bits
allocated to each of them. Some model checkers (e.g.,
SMT-CBMC, F-Soft and Blast [2], [3], [16]) treat
program variables either as unbounded integers or they
do not generate VCs related to arithmetic overflow and
consequently can produce false positive results when
a VC cannot violate the boundary condition. In our
work, we encode VCs related to arithmetic overflow
and underflow in the following way: On arithmetic
overflow of unsigned integer types (e.g., unsigned int,
unsigned long int), the ANSI-C standard requires that
the result must be encoded as modulo (i.e., r mod
2w, where r is the operation that caused overflow
and w is the width of the resulting type in terms of
bits) [6]. Hence, the result of this encoding is one
greater than the largest value that can be represented
by the resulting type. These semantics can be easily
encoded using the background theories of the SMT
solvers.

On the other hand, on arithmetic overflow of signed
types (e.g., int, long int), the ANSI-C standard does not
define any behaviour to detect signed integer overflow
and it only states that integer division-by-zero must be
detected. As a result, we consider arithmetic overflow

on addition, subtraction, multiplication, division and
negation operations. Formally, let overflow∗(x, y)
denote a literal that is true if and only if the mul-
tiplication of x and y is over LONG MAX and let
underflow∗(x, y) denote another literal that is true
if and only if the multiplication of x and y is under
LONG MIN. Let res op∗ be a literal that denotes the
validity of the signed multiplication. Then, we add the
following constraint:

res op∗ ⇔ ¬overflow∗(x, y) ∧ ¬underflow∗(x, y)

The addition, subtraction and division are encoded
in a similar way and are denoted by overflow+,
underflow+, overflow−, underflow−, overflow/.
However, the function overflow∼(x) takes only one
argument and returns true if and only if the negation
of x is outside the interval given by LONG MIN and
LONG MAX.

3.3.3. Arrays. Arrays are encoded in a straight-
forward manner using the domain theories, and we
consider the WITH operator and index operator [] to
be part of the encoding [7], [17]. These operators are
mapped to the functions store and select of the array
theory presented in Section 2.2 respectively. For the
with operator, let a be an array, i be an integer variable,
and v be an expression with the type of the elements
in a. The operator with takes a, i, and v and returns an
array that is exactly the same as array a except that the
value at index position i is v (if i is within the array
bounds). Formally, let a′ be a with [i] := v, and j an
index of a, then:

a′ [j] =

{

i = j → v,
i (= j → a [j]

(7)

If an array index operation is out of bounds, the
value of the index operator is a free variable, i.e., it is
chosen non-deterministically.

3.3.4. Structures and Unions. Structures and unions
are encoded by using the theory of tuples in SMT and
map update and access operations to the functions store
and select of the tuples theory presented in Section 2.2
respectively. As a result, we describe here only the
encoding process of structures, but unions are encoded
in a similar way. Let w be a structure type, f be a field
name of this structure, and v be an expression matching
the type of the field f. The expression store takes w,
f, and v and returns a tuple that is exactly the same
as tuple w except that the value at field f is v and all
other tuple elements remain the same. Formally, let w′

be store(w, f, v) and j be a field name of w, then:

w′.j =

{

j = f → v,
j (= f → w.j

(8)

3.3.5. Pointers. The ANSI-C language offers two
dereferencing operators ∗p and p [i], where p denotes a
pointer (or array) and i denotes an integer index. The
front-end of CBMC removes all pointer dereferences
bottom-up during the unwinding phase. Therefore, the
ANSI-C pointers are treated as program variables and
CBMC’s VCG generates two properties related to
pointer safety: (i) check if the pointer points to a
correct object (represented by SAME OBJECT) and
(ii) check if the pointer is neither NULL nor an invalid
object (represented by INVALID POINTER).

We thus encode pointers using two fields of a tuple.
Let p denote the tuple which encodes a pointer type
expression. The first field p.o, encodes the object the
pointer points to, while the second field p.i, encodes an
index within that object. It is important to note that in
our encoding the field p.o is dynamically adjusted in
order to accommodate the object that the pointer points
to. This approach is similar to the encoding of CBMC
into propositional logic, but we use the background
theories such as tuples and bit-vector arithmetic while
CBMC encodes them by concatenating the bit-vectors.

Formally, let pa be a pointer expression that points
to the object a and pb be another pointer expression
that points to the object b. Let ls be a literal and we
then encode the property SAME OBJECT by adding
the following constraint:

ls ⇔ (pa.o = pb.o) (9)

To check invalid pointers, the NULL pointer is
then encoded with an unique identifier denoted by
η and invalid object is denoted by ν. Let p denote
a pointer expression. Hence we encode the property
INVALID POINTER by creating a literal li and adding
the following constraint:

li ⇔ (p.o (= ν) ∧ (p.i (= η) (10)

It is important to note that in the case that a pointer
points to single element of a scalar data type (e.g., int,
char), then p.i consists of 0 only. However, in case of
an array consisting of elements of a scalar data type,
p.i is considered to be equal to the array index. As an
example to explain our encoding, we modified the C
program of Figure 2(a) so that a pointer p points to
the array a as shown in line 3 of Figure 5. In addition
to the constraints and properties shown in (1) and (2)
(Section 3.1), the front-end generates one additional
constraint (i.e., the front-end treats the assignment

p=a in line 3 as p=&a[0]) and one additional VC
(i.e., SAME OBJECT(p, &a[0])) for the C program
of Figure 5. The constraint p=&a[0] is encoded as
follows: the first element of the tuple (p.o) contains
the array a and the second element (p.i) contains the
index whose value is equal to 0. In order to check the
property specified by the assert macro in line 8, we
first add the value 2 to p.i and then check whether p
and a point to the same element. As p.i exceeds the
size of the object stored in p.o, i.e., array a, then the
VC is violated and thus the assert macro defined in
line 8 is false.

1 i n t main () {
2 i n t a [2] , i , x , ∗p ;
3 p=a ;
4 i f (x ==0)
5 a [i] = 0 ;
6 e l s e
7 a [i +2]=1 ;
8 a s s e r t (∗ (p + 2) = = 1) ;
9 }

Figure 5. C program with pointer to an array.

Structures consisting of n fields with scalar data
types are also manipulated like an array with n ele-
ments. This means that the front-end of CBMC allows
us to encode the structures by using the usual update
and access operations. If the structure contains arrays,
pointers and scalar data types, then p.i points to
the object within the structure only. As an example,
Figure 6 shows a C program that contains a pointer to
a struct consisting of two fields (an array a of integer
and a char variable b). In order to reason about this
C program, the front-end generates the constraints and
properties and we then encode and pass the resulting
formulae to the SMT solvers as C∧¬P (as shown in
(11) and (12)).

As the struct y is declared as global in Figure 6 (lines
1-4), its members must be initialized before performing
any operation as shown in (11) (first line) [6]. The
assignment p = &y (line 7 of Figure 6) is encoded by
assigning the structure y to the field p1.o and the value
0 to the field p1.i. However, the front-end does not
generate any VC related to pointer safety since there
is no violation of the pointer p in the C program of
Figure 6 (i.e., the pointer p points to the correct object).
As a result, the front-end performs static checking and
does not generate unnecessary VCs. Thus, the pointer
p represented by the tuple p1 is not used for reasoning
about this program.

1 s t r u c t x {
2 i n t a [2] ;
3 char b ;
4 } y ;
5 i n t main (void) {
6 s t r u c t x ∗p ;
7 p=&y ;
8 p−>a [1] = 1 ;
9 p−>b= ’ c ’ ;

10 a s s e r t (p−>a [1] = = 1) ;
11 a s s e r t (p−>b== ’ c ’) ;
12 }

Figure 6. C program with pointer to a struct.

C :=

y1 := store(store(y0.a, 0, 0), 1, 0) ∧ y0.b = 0
∧ p1.o := y ∧ p1.i := 0
∧ y2 := store(y1, a, store(y1.a, 0, 0))
∧ y3 := store(y2, a, store(y2.a, 1, 1))
∧ y4 := store(y3, b, 99)

(11)
P :=

[

select(select(y4, a), 1) = 1
∧ select(y4, b) = 99

]

(12)

4. Experimental Evaluation

The experimental evaluation of our work consists of
three parts. The first part in Section 4.1 contains the
results of applying ESW-CBMC to the verification of
fifteen ANSI-C programs using three different SMT
solvers CVC3, Boolector and Z3. The purpose of
this first part is thus to identify the most promising
SMT solver for further development and experiments.
CVC3, Boolector and Z3 are well suited for the
purpose that they were written for and our intention
is to integrate all of them into the back-end of CBMC,
but firstly we need to prioritize the tasks. The second
part, described in Section 4.2, contains the results of
applying ESW-CBMC and SMT-CBMC to the veri-
fication of the official benchmark of the SMT-CBMC
model checker. We use the official benchmark, because
SMT-CBMC does not support some of the ANSI-
C constructs commonly found in embedded software
(e.g., bit operations, floating-point arithmetic, pointer
arithmetic). As a result, the purpose of this second
part is to evaluate ESW-CBMC’s relative performance
against SMT-CBMC.

The third part in Section 4.3 contains the experi-
mental results of applying CBMC and ESW-CBMC to
the verification of embedded software used in telecom-
munications, control systems and medical devices. The
purpose of this third part is to evaluate ESW-CBMC’s
relative performance against CBMC using standard

embedded software benchmarks. All experiments were
conducted on an otherwise idle Intel Xeon 5160, 3GHz
server with 4 GB of RAM running Linux OS. For
all benchmarks, the time limit has been set to 3600
seconds for each individual property. All times given
are wall clock time in seconds as measured by the unix
time command through a single execution.

4.1. Comparison of SMT solvers

As a first step, we analyzed to which extent the
SMT solvers support the domain theories that are
required for SMT-based BMC of ANSI-C programs.
For this purpose, we analyzed the following versions
of the SMT solvers: CVC3 (1.5), Boolector (1.0) and
Z3 (2.0). For the theory of linear and non-linear
arithmetic, Z3 and CVC3 do not support the remainder
operator, but they allow us to define axioms to support
it. Currently, Boolector does not support the theory
of linear and non-linear arithmetic. In the theory of
bit-vectors, CVC3 does not support the division and
remainder operators (/, rem) for bit-vectors represent-
ing signed and unsigned integers. However, in all
cases, axioms can be specified in order to improve
the coverage. Z3 and Boolector support all word-level,
bit-level, relational, arithmetic functions over unsigned
and signed bit-vectors. In the theories of arrays and
tuples, the verification problems only involve selecting
and storing elements from/into arrays and tuples, re-
spectively, and both domains thus comprise only two
operations. These operations are fully supported by
CVC3 and Z3, but Boolector does not support the
theory of tuples.

In order to evaluate the SMT solvers, we used
a number of ANSI-C programs taken from standard
benchmark suites. The results of this first part are
shown in Table 1. The first seven programs are taken
from the benchmark suite of the SMT-CBMC model
checker [2]. These programs depend on a positive
integer N that defines the size of the arrays in the
programs and/or the number of iterations done by
the program. Armando et al. already proved that this
class of programs allows us to assess the scalability of
the model checking tools on problems of increasing
complexity [2]. The next four programs are taken
from the SNU Real-Time benchmarks suite [15]. These
programs implement the insertion sort algorithm, Fi-
bonacci function, binary search algorithm and the
least mean-square (LMS) adaptive signal enhancement.
Program 9 is taken from the MiBench benchmark and
implements the root computation of cubic equations.
Program 10 is taken from the CBMC manual [7] and
implements the multiplication of two numbers using

CVC3 Boolector Z3
Module #L B #P Size Time Failed Size Time Failed Size Time Failed

1 BubbleSort 43 35 17 9031 28.27 0 3011 1.94 0 6057 2.03 0
43 140 17 146371 MO 1 48791 182.67 0 97722 163.15 0

2 SelectionSort 34 35 17 6982 8.48 0 1955 0.78 0 5134 0.83 0
34 140 17 108832 MO 1 29885 74.59 0 79369 74.36 0

3 BellmanFord 49 20 33 1076 0.45 0 326 0.27 0 656 0.3 0
4 Prim 79 8 30 4008 16.88 0 1296 0.5 0 3017 0.48 0
5 StrCmp 14 1000 6 9005 9.88 0 3003 91.145 0 7006 38.75 0
6 SumArray 12 1000 7 3001 1.22 0 1001 0.93 0 2003 4.74 0
7 MinMax 19 1000 9 17989 MO 1 5997 947.58 0 11994 6.22 0
8 InsertionSort 86 35 17 9337 35.57 0 3113 2.37 0 6328 2.51 0

86 140 17 147622 MO 1 49208 TO 1 98833 143 0
9 Fibonacci 83 15 4 16 15.12 0 16 15.6 0 16 15.2 0
10 bs 95 15 7 17 0.21 0 17 0.02 0 17 0.02 0
11 lms 258 202 23 14810 1011.92 0 5005 138.74 0 10211 138.6 0
12 Cubic 66 5 5 40 0.01 0 20 0.19 0 33 0.2 0
13 BitWise 18 8 1 77 272.38 0 27 7.51 0 53 28.37 0
14 adpcm encode 149 41 12 6417 211.81 0 2377 738.86 0 4878 5.49 0
15 adpcm decode 111 41 10 23885 43.77 0 9121 20.16 0 19270 14.31 0

Table 1. Results of the comparison between CVC3, Boolector and Z3. Time-outs are represented with TO
in the Time column; Examples that exceed available memory are represented with MO in the Time column.

bit operations. The last two programs are taken from
the High Level Synthesis benchmarks suite [18] and
implement the encoder and decoder of the adaptive
differential pulse code modulation (ADPCM). The C
programs from 8 to 15 contain typical ANSI-C con-
structs found in embedded software, i.e., they contain
linear and non-linear arithmetic and make heavy use
of bit operations.

Table 1 shows the results of the comparison between
CVC3, Boolector and Z3. The first column #L gives
the total number of lines of code, the second column
B gives the unwinding bound while the third column
#P gives the number of properties to be verified for
each ANSI-C program. Size gives the total number of
variables that are needed to encode the constraints and
properties of the ANSI-C programs. Time provides the
average time in seconds to check all properties of a
given ANSI-C program and Failed indicates how many
properties failed during the verification process. Here,
properties can fail for two reasons: either due to a time
out (TO) or due to memory out (MO). As we can see
in Table 1, Z3 runs slightly faster than Boolector and
CVC3 except for the ANSI-C programs StrCmp and
SumArray. As we mentioned previously, the purpose
of this evaluation is to prioritize the integration of the
SMT solvers into the back-end of CBMC and not to
define the best SMT solver. Since Z3 supports most
of the occurring operations, we chose to continue the
development with Z3.

ESW-CBMC SMT-CBMC
Module #L B Z3 CVC3 CVC3
BubbleSort 43 35 2.03 28.27 94.5

43 140 163.15 MO ∗
SelectionSort 34 35 0.83 8.48 66.52

34 140 74.36 MO MO
BellmanFord 49 20 0.3 0.45 13.62
Prim 79 8 0.48 16.88 18.36
StrCmp 14 1000 38.75 9.88 TO
SumArray 12 1000 4.74 1.22 113.8
MinMax 19 1000 6.22 MO MO

Table 2. Results of the comparison between
ESW-CBMC and SMT-CBMC.

4.2. Comparison to SMT-CBMC

This subsection describes the evaluation of ESW-
CBMC against another SMT-based BMC that was
developed in [2], [5]. In order to carry out this evalu-
ation, we took the official benchmark of SMT-CBMC
tool available at [19]. SMT-CBMC has been invoked
by setting manually the file name and the unwinding
bound (i.e., SMT-CBMC -file name -bound n).
Furthermore, we used the default solver of SMT-
CBMC (i.e, CVC3 1.5) against the default solver of
ESW-CBMC (i.e., Z3 2.0) as well as ESW-CBMC
connected to CVC3 1.5. Table 2 shows the results of
this evaluation.

If CVC3 is used as SMT solver, both tools run out of

memory (although only after exceeding the time out)
and fail (due to many dynamic choice points repre-
sented by ∗) to analyze BubbleSort and SelectionSort
for large N (N=140), and MinMax. This indicates some
problems in the solver itself, rather than in verification
tools. In addition, SMT-CBMC runs out of time to
analyze the program StrCmp. However, if Z3 is used as
solver for ESW-CBMC, the difference becomes even
more noticeable and ESW-CBMC outperforms SMT-
CBMC consistently by a factor of 20-40.

4.3. Comparison to CBMC

In order to evaluate ESW-CBMC’s relative perfor-
mance against CBMC, we analyze different bench-
marks such as SNU Real-Time, PowerStone, NEC and
NXP [15], [20], [21], [22]. The SNU Real-Time bench-
marks contain ANSI-C programs that implement cyclic
redundancy check, Fast Fourier Transform, LMS adap-
tive signal enhancement, JPEG, matrix multiplication,
LU decomposition and root computation of quadratic
equations. The PowerStone benchmarks contain graph-
ics applications, ADPCM encoder and decoder, paging
communication protocols and bit shifting applications.
The NEC benchmark contains an implementation of
the Laplace transform. The NXP benchmarks are taken
from the set-top box of NXP semiconductors that
is used in high definition internet protocol (IP) and
hybrid digital TV (DTV) applications. The embedded
software of this platform relies on the Linux operating
system and makes use of different applications such
as (i) LinuxDVB that is responsible for controlling
the front-end, tuners and multiplexers, (ii) DirectFB
that provides graphics applications and input device
handling and (iii) ALSA that is used to control the audio
applications. This platform contains two embedded
processors that exchange messages via an inter-process
communication (IPC) mechanism.

We evaluated CBMC version 2.9 and we invoke
both tools (i.e., CBMC and ESW-CBMC) by setting
manually the file name, the unwinding bound and
the overflow check (i.e., CBMC file --unwind
n --overflow-check). Table 3 shows the results
when applying CBMC and ESW-CBMC to the verifi-
cation of the embedded software benchmarks.

As we can see in Table 3, CBMC is not able to check
the programs fft1k and lms due to memory limitations.
Moreover, CBMC takes considerably more time than
ESW-CBMC to model check the programs ludcmp,
qurt and laplace. In addition, ESW-CBMC runs faster
than CBMC for the programs adpcm, exStbHDMI and
exStbLED. The only case that CBMC runs faster than
ESW-CBMC is with the program exStbResolution. For

the remaining benchmarks, the verification times of
ESW-CBMC and CBMC are very close. It is important
to point out that the encoding time of ESW-CBMC,
for all analyzed programs, is slightly faster than the
encoding time of CBMC. The results in Table 3 allow
us to assess quantitatively that ESW-CBMC scales
significantly better than CBMC for problems that in-
volve tight interplay between non-linear arithmetic,
bit operations, pointers and array manipulations. In
addition, both tools were able to find undiscovered
bugs related to arithmetic overflow, invalid pointer and
pointer arithmetic in the programs jfdctint, blit and
pocsag respectively.

5. Related Work

SMT-based BMC is gaining popularity in the for-
mal verification community due to the advent of
sophisticated SMT solvers built over efficient SAT
solvers [10], [11], [12]. Previous work related to SMT-
based BMC [2], [3], [4], [5] combined decision proce-
dures for the theories of uninterpreted functions, arrays
and linear arithmetic only, but did not encode key
constructs of the ANSI-C programming language such
as bit operations, floating-point arithmetic and pointers.
Ganai and Gupta describe a verification framework
for BMC which extracts high-level design informa-
tion from an extended finite state machine (EFSM)
and applies several techniques to simplify the BMC
problem [3], [23]. However, the authors flatten the
structures and arrays into scalar variables in such a
way that they use only the theory of integer and real
arithmetic in order to solve the verification problems
that come out in BMC.

Armando et al. also propose a BMC approach us-
ing SMT solvers for C programs [2], [5]. However,
they only make use of linear arithmetic (addition and
multiplication by constants), arrays, records and bit-
vectors in order to solve the verification problems.
As a consequence, their SMT-CBMC prototype does
not address important constructs of the ANSI-C pro-
gramming language such as non-linear arithmetic and
bit-shift operations. Xu proposes the use of SMT-
based BMC to verify real-time systems by using TCTL
to specify the properties [4]. The author considers
an informal specification (written in English) of the
real-time system and then models the variables using
integers and reals and represents the clock constraints
using linear arithmetic expressions.

De Moura et al. present a bounded model checker
that combines propositional SAT solvers with domain-
specific theorem provers over infinite domains [24].
Differently from other related work, the authors ab-

CBMC ESW-CBMC
Time #P Time #P

Module #L B #P En
co

di
ng

D
ec

isi
on

Pr
oc

ed
ur

e

To
ta

l

Pa
ss

ed

Vi
ol

at
ed

Fa
ile

d

En
co

di
ng

D
ec

isi
on

Pr
oc

ed
ur

e

To
ta

l

Pa
ss

ed

Vi
ol

at
ed

Fa
ile

d

1 sensor 603 5 167 2.04 0.002 2.04 167 0 0 1.23 0.02 1.26 167 0 0
2 crc 125 257 18 5.60 0.003 5.60 18 0 0 4.08 0.07 4.16 18 0 0
3 fft1 218 9 72 0.44 0.001 0.44 72 0 0 0.43 0.005 0.43 72 0 0
4 fft1k 155 1025 39 MO MO MO 0 0 39 2337.83 0.055 2337.88 39 0 0
5 fibcall 83 30 2 0.19 0 0.19 2 0 0 0.15 0.002 0.15 2 0 0
6 fir 314 34 25 4.88 0.02 4.9 25 0 0 3.36 0.68 4.04 25 0 0
7 insertsort 86 10 17 0.36 0.005 0.37 17 0 0 0.31 0.02 0.32 17 0 0
8 jfdctint 374 65 331 1.22 0.001 1.22 330 1 0 0.45 2.41 2.86 330 1 0
9 lms 258 202 35 MO MO MO 0 0 35 132.6 0.24 132.84 35 0 0

10 ludcmp 144 7 88 4.52 TO TO 87 0 1 0.017 1.44 1.46 88 0 0
11 matmul 81 6 31 1.16 0 1.16 31 0 0 1.06 0.012 1.07 31 0 0
12 qurt 164 20 8 18.83 TO TO 7 0 1 1.22 7.7 8.92 8 0 0
13 bcnt 86 17 162 4.42 0.05 4.47 162 0 0 1.24 0.89 2.13 162 0 0
14 blit 95 1 129 0.21 0.001 0.21 128 1 0 0.13 0.28 0.41 128 1 0
15 pocsag 521 42 183 15.32 0.1 15.42 182 1 0 12.33 5.77 18.1 182 1 0
16 adpcm 473 100 553 74.34 3.52 77.86 553 0 0 45.73 9.24 54.97 553 0 0
17 laplace 110 11 76 30.81 TO TO 0 0 76 12.32 0.29 12.62 76 0 0
18 exStbKey 558 20 18 1.23 0.002 1.23 18 0 0 1.22 0.004 1.23 18 0 0
19 exStbHDMI 1045 15 25 167.91 78.97 246.88 25 0 0 164.43 33.53 197.96 25 0 0
20 exStbLED 430 40 6 195.97 129.8 325.77 6 0 0 165.63 44.53 210.16 6 0 0
21 exStbHwAcc 1432 1000 113 0.67 0.002 0.67 113 0 0 0.72 0.004 0.73 113 0 0
22 exStbResolution 353 200 40 271.8 319.13 590.93 40 0 0 269.31 1161.16 1430.47 40 0 0

Table 3. Results of the comparison between CBMC and ESW-CBMC

stract the Boolean formula and then apply a lazy
approach to refine it in an incremental way. This
approach is applied to verify timed automata and RTL
level descriptions. Jackson et al. [25] discharge several
verification conditions from programs written in the
Spark language to the SMT solvers CVC3 and Yices as
well as to the theorem prover Simplify. The idea of this
work is to replace the Praxis prover by CVC3, Yices
and Simplify in order to generate counter-example
witnesses to verification conditions that are not valid.
This is an ongoing project and several improvements
are planned to be integrated into their tool.

Recently, a number of static checkers have been de-
veloped in order to trade off scalability and precision.
Calysto is an efficient static checker that is able to
verify VCs related to arithmetic overflow, null-pointer
dereferences and assertions specified by the user [26].
The VCs are passed to the SMT solver SPEAR which
supports boolean logic, bit-vector arithmetic and is
highly customized for the VCs generated by Calysto.
However, Calysto does not support float-point opera-
tions and unsoundly approximates loops by unrolling
them only once. As a consequence, soundness is re-
linquished for performance. Saturn is another efficient

static checker that scales to larger systems, but with
the drawback of losing precision by supporting only
the most common integer operators and performing at
most two unwindings of each loop [27].

6. Conclusions

In this work, we have investigated SMT-based veri-
fication of ANSI-C programs, in particular embedded
software. We have described a new set of encodings
that allow us to reason accurately about bit operations,
unions, float-point arithmetic, pointers and pointer
arithmetic and we have also improved the performance
of SMT-based BMC for embedded software by making
use of high-level information to simplify the unrolled
formula. Our experiments constitute, to the best of
our knowledge, the first substantial evaluation of this
approach over industrial applications. The results show
that our approach outperforms CBMC [7] and SMT-
CBMC [2] if we consider the verification of embedded
software. SMT-CBMC still has limitations not only
in the verification time (due to the lack of simplifi-
cation based on high-level information), but also in
the encodings of important ANSI-C constructs used

in embedded software. CBMC is a bounded model
checker for full ANSI-C, but it has limitations due
to the fact that the size of the propositional formulae
increases significantly in the presence of large data-
paths and high-level information is lost when the verifi-
cation conditions are converted into propositional logic
(preventing potential optimizations to reduce the state
space to be explored). For future work, we intend to
investigate the application of termination analysis [29]
and incorporate reduction methods to simplify the k-
model.

Acknowledgement. We thank D. Kroening, C. Win-
tersteiger and L. Platania for many helpful discussions about
CBMC and SMT-CBMC model checking tools. We also
thank L. de Moura and R. Brummayer for analyzing the
VCs generated by ESW-CBMC and for indicating the most
suitable configuration parameters and encoding for the SMT
solvers Z3 and Boolector respectively. We also thank D.
Kroening and J. Colley for reviewing a draft version of this
paper.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu,
“Symbolic model checking without BDDs,” in TACAS,
1999, pp. 193–207.

[2] A. Armando, J. Mantovani, and L. Platania, “Bounded
model checking of software using SMT solvers instead
of SAT solvers,” in SPIN, 2006, pp. 146–162.

[3] M. K. Ganai and A. Gupta, “Accelerating high-level
bounded model checking,” in ICCAD, 2006, pp. 794–
801.

[4] L. Xu, “SMT-based bounded model checking for real-
time systems,” in QSIC, 2008, pp. 120–125.

[5] A. Armando, J. Mantovani, and L. Platania, “Bounded
model checking of software using SMT solvers instead
of SAT solvers,” Int. J. Softw. Tools Technol. Transf.,
pp. 69–83, 2009.

[6] ISO, ISO/IEC 9899:1999: Programming languages C,
International Organization for Standardization, 1999.

[7] E. Clarke, D. Kroening, and F. Lerda, “A tool for
checking ANSI-C programs,” in TACAS, 2004, pp. 168–
176.

[8] C. Wintersteiger, Compiling GOTO-Programs,
http://www.cprover.org/goto-cc/, 2009.

[9] SMT-LIB, The Satisfiability Modulo Theories Library,
http://combination.cs.uiowa.edu/smtlib, 2009.

[10] C. Barrett and C. Tinelli, “CVC3,” in CAV, 2007, pp.
298–302.

[11] R. Brummayer and A. Biere, “Boolector: An efficient
SMT solver for bit-vectors and arrays,” in TACAS,
2009, pp. 174–177.

[12] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in TACAS, 2008, pp. 337–340.

[13] A. Biere, M. Heule, H. Van Maaren, and T. Walsh,
Handbook of Satisfiability. IOS Press, 2009.

[14] S. S. Muchnick, Advanced compiler design and imple-
mentation. Morgan Kaufmann Publishers Inc., 1997.

[15] S.-S. Lim, SNU Real-Time Benchmarks Suite,
http://archi.snu.ac.kr/realtime/benchmark/, 2009.

[16] T. A. Henzinger et al., BLAST: Berkeley
Lazy Abstraction Software Verification Tool.
http://mtc.epfl.ch/software-tools/blast/, 2009.

[17] D. Gries and G. Levin, “Assignment and procedure call
proof rules,” ACM Trans. Program. Lang. Syst., pp.
564–579, 1980.

[18] S. Gupta, High Level Synthesis Benchmarks Suite,
http://mesl.ucsd.edu/spark/benchmarks.shtml, 2009.

[19] L. Platania, C Bounded Model Checking Benchmarks,
http://www.ai-lab.it/eureka/bmc.html, 2009.

[20] J. Scott, J. Scott, L. H. Lee, L. H. Lee,
J. Arends, J. Arends, B. Moyer, and B. Moyer,
Designing the Low-Power M*CORE Architecture,
http://www.verify.ethz.ch/goto-cc/examples/, 1998.

[21] S. Sankaranarayanan, NECLA Static Analysis Bench-
marks. http://www.nec-labs.com/research/system/,
2009.

[22] NXP, High definition IP and hybrid DTV set-top box
STB225. http://www.nxp.com/, 2009.

[23] M. K. Ganai and A. Gupta, “Completeness in SMT-
based BMC for software programs,” in DATE, 2008,
pp. 831–836.

[24] L. M. de Moura, H. Rueß, and M. Sorea, “Lazy theo-
rem proving for bounded model checking over infinite
domains,” in CADE, 2002, pp. 438–455.

[25] P. B. Jackson, B. J. Ellis, and K. Sharp, “Using SMT
solvers to verify high-integrity programs,” in 2nd Work-
shop on Automated Formal Methods, 2007, pp. 60–68.

[26] D. Babić and A. J. Hu, “Calysto: Scalable and Precise
Extended Static Checking,” in ICSE, 2008, pp. 211–
220.

[27] Y. Xie and A. Aiken, “Scalable error detection using
Boolean satisfiability,” SIGPLAN Not., pp. 351–363,
2005.

[28] J. McCarthy, “Towards a Mathematical Science of
Computation,” in IFIP Congress, 2008, pp. 21–28.

[29] R. C. Andreas, B. Cook, A. Podelski and A. Ry-
balchenko, “Terminator: Beyond Safety,” in CAV, 2006,
pp. 415–418.

