
Multi-Resource Allocation: Fairness-Efficiency
Tradeoffs in a Unifying Framework

Carlee Joe-Wong∗, Soumya Sen∗, Tian Lan†, Mung Chiang∗
∗Department of Electrical Engineering, Princeton University, Princeton, NJ 08544

†Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052
Email: {cjoe, soumyas, chiangm}@princeton.edu, tlan@gwu.edu

Abstract—Quantifying the notion of fairness is under-explored
when there are multiple types of resources and users request dif-
ferent ratios of the different resources. A typical example is data-
centers processing jobs with heterogeneous resource requirements
on CPU, memory, network, bandwidth, etc. A generalization of
max-min fairness to multiple resources was proposed this year in
[1], but may suffer from a significant loss of efficiency. This paper
develops a unifying framework addressing this fairness-efficiency
tradeoff in light of multiple types of resources. We develop two
families of fairness functions which provide different tradeoffs,
characterize the effect of user requests’ heterogeneity, and prove
conditions under which these fairness measures satisfy the Pareto
efficiency, sharing incentive, and envy-free properties. Intuitions
behind the analysis are explained in two visualizations of multi-
resource allocation.

I. INTRODUCTION

A. Motivation

Comparing fairness of different allocations of a single
type of resource has been extensively studied. Fairness can
be quantified with a variety of metrics, such as Jain’s in-
dex [2]. Alternatively, different notions of fairness, including
proportional and max-min fairness, can be achieved through
maximization of α-fair or isoelastic utility functions [3]. These
approaches, as well as others from economics and sociology,
have recently been unified as the unique family of functions
satisfying four axioms for fairness metrics [4]. The tradeoff
between fairness and efficiency has also been studied in [5]–
[7].

When it comes to allocating multiple types of resources,
however, there has been much less systematic study, the recent
paper [1] being a notable exception. Indeed, it is unclear what
it means to say that a multi-resource allocation is “fair.” Each
user in a network requires a certain combination of different
resource types to process one job, and this combination may
differ from user to user. For example, datacenters allocate dif-
ferent resources (memory, CPUs, storage, bandwidth, etc.) to
competing users with different requirements. One user might
have computational jobs requiring more CPU cycles than
memory, while another might have the opposite requirements.

The need for multi-resource fairness functions can be illus-
trated with a very simple example, as shown in Fig. 1, where
two users require CPUs and memory in order to perform some
jobs. User 1 requires 2 GB of memory and 3 CPUs per job,
while user 2 needs 2 GB of memory and 1 CPU per job.

Memory (GB) CPUs (MIPS) 

User	
  1	
  

User 2 

Fig. 1. An example of multi-resource requirements in datacenters.

Many allocations might be considered “fair” in this exam-
ple: should users be allocated resources in proportion to their
resource requirements? Or should they be allocated resources
so as to process equal numbers of jobs? The fairness measure
proposed this year in [1], called Dominant Resource Fairness
(DRF), allocates resources according to max-min fairness on
dominant resource shares. In this example, DRF would allocate
0.76 jobs to user 1 and 1.71 jobs to user 2, for a total of 2.47
jobs processed. But this allocation brings about a significant
loss in system efficiency; e.g., a more unequal allocation of
0.17 jobs to user 1 and 2.83 jobs to user 2 yields a total
of 3 jobs. An in-between allocation can be realized if another
well-known fairness metric, α-fairness, is adapted for multiple
resources following our methods in Section III-B. For α = 0.5,
user 1 has 0.57 jobs and user 2 has 2.29 jobs, for a total of
2.86 jobs. Each of these allocations represents one point of
the fairness-efficiency tradeoff. This paper develops a unifying
framework for studying this tradeoff in light of multiple types
of resources and heterogeneity in users’ resource requirements.

Multi-resource allocation problems arise in increasingly
many applications. Datacenters selling bundles of CPUs, mem-
ory, storage, and network bandwidth are just one example. In
fact, even the classical problem of bandwidth allocation in a
congested network can be viewed as a special case of multi-
resource allocation. Given a network and its topology, we can
view each link as a separate resource with a distinct capacity.
Each user is represented by a network flow, which uses a pre-
defined subset of links. In this special case, resource requests
on all the links must be the same for each user.

In general, multi-resource allocation cannot be trivially
turned into single-resource allocation by assuming different
resources are interchangeable. For example, if a cloud client
needs 2 units of CPU and 5 units of networking bandwidth to
finish 1 unit of job, adding many more units of CPU does not
reduce the need for 5 units of bandwidth.
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B. Unique Challenges of Multi-Resource Fairness

The following new challenges on fairness arise due to the
presence of multiple types of resources:
• In a single-resource scenario, users’ resource require-

ments can be represented with a scalar. With multiple
resources, users have vectors of resource requirements,
which may all look different and must be scalarized
before fairness can be evaluated. We present two ways
to visualize user heterogeneity in Section III-A and two
methods for this scalarization in Section III-B, yielding
parametrized families of multi-resource fairness measures
that satisfy the axioms of [4].

• In a single-resource scenario, the most efficient allocation
will clearly use the entire resource. In a multi-resource
scenario, however, users’ heterogeneous resource require-
ments may not allow each resource to be completely used.
Even how to measure efficiency is unclear: should we
use the total number of jobs allocated1? Or the amount
of leftover resource capacity? Section IV numerically
examines both of these efficiency metrics, while Props.
1 and 2 and their corollaries examine the impact of user
heterogeneity on the number of jobs processed.

• The extension of max-min fairness to multiple resources
is shown in [1] to satisfy such properties as Pareto-
efficiency for certain parameter values. We characterize
the parametrizations under which our multi-resource fair-
ness functions satisfy Pareto-efficiency, sharing incentive,
and envy-freeness (Props. 3-5 and their corollaries).

• The existence of a fairness-efficiency tradeoff depends
on both the scalarization of users’ resource requirements
and the subsequent evaluation of fairness. We show
that a greater emphasis on equity or fairness need not
always decrease efficiency (Prop. 6) and give analytical
conditions on when the fairness-efficiency tradeoff exists
(Props. 7 and 8 and their corollaries).

After further discussion of related work in Section II,
Section III develops our two new families of fairness functions,
which we call Fairness on Dominant Shares (FDS) and
Generalized Fairness on Jobs (GFJ). FDS includes the
max-min fairness measure DRF proposed in [1] as a special
case. We investigate key properties of these functions, and
characterize conditions under which they are satisfied by FDS
and GFJ. Section IV then applies our fairness functions to
numerical examples of datacenters. We examine the relation-
ship between the fairness-efficiency tradeoff and FDS and GFJ
parametrizations.

Due to space limitations, all proofs and a few extensions
can be found in the technical report available online [8].

II. RELATED WORK

Much of the existing theory on the fairness of resource
allocations is devoted to allocations of a single resource [4],
[9], [10] (e.g. allocating available link bandwidth to network

1The phrases “jobs allocated” and “jobs processed” are used interchange-
ably throughout the paper

flows [11]–[14]). The recent work [4] develops the following
family of fairness functions for a single resource, unifying
previously developed fairness measures. It was proven that
this family, parametrized by two numbers, is the only family
of functions satisfying four simple axioms of fairness metrics:

fβ,λ(~x) = sgn(1−β)

 n∑
i=1

(
xi∑n
j=1 xj

)1−β
 1

β ( n∑
i=1

xi

)λ
,

(1)
where β ∈ R and λ ∈ R are parameters. The parameter β gives
the “type” of fairness measured by (1), and the parameter λ
gives the emphasis on efficiency. A larger |λ| indicates greater
emphasis on efficiency over fairness. If we take λ = 1−β

β , then
taking the limit as β → 1 yields proportional fairness.

Even multi-resource allocation problems, such as scheduling
jobs in a datacenter, are often simply treated as a single
resource problem (e.g. the Hadoop and Dryad schedulers [15]).
Given the limitations of this approach, a recent paper [1]
generalizes the max-min fairness measure to multiple resource
settings. Our work develops a unified analytical framework
for fairness of multi-resource allocations. In particular, in
contrast to [1], we incorporate the tradeoff between fairness
and efficiency in multi-resource settings.

III. FAIRNESS-EFFICIENCY OF MULTI-RESOURCE
ALLOCATIONS

We first present “dual” visualizations of heterogeneity
among users’ requirements for multiple resources in Sec-
tion III-A. Section III-B then develops two new families
of fairness functions, which scalarize these heterogeneous
resource requirement vectors and use them to evaluate the
fairness of multi-resource allocations. These two families are
Fairness on Dominant Shares (FDS) and Generalized Fairness
on Jobs (GFJ). FDS measures the fairness of users’ resource
allocations by accounting for both the number of jobs allocated
to each user (a function of the resources available) and the
heterogeneity in different resource requirements across users.
GFJ, on the other hand, assumes that users’ utility depends
solely on the number of jobs they are allocated, irrespective
of their differing resource needs. Section III-C proves key
properties of these FDS and GFJ functions.

A. Visualizing User Heterogeneity

A major challenge of multi-resource fairness is incorporat-
ing the heterogeneity of different users’ requirements for dif-
ferent resources into the assessment of its fairness. Visualizing
this heterogeneity can yield useful insights. Moreover, Section
IV examines in detail how heterogeneity affects the optimal
allocation and achieved efficiency.

Figure 2 provides two ways to visualize user heterogeneity.
Each user j requires Rij of resource type i for each job.

The first (top) visualization has as many dimensions as there
are different types of resources. The axes correspond to the
resources (two types of resources here for visual simplicity),
with the box representing the resource constraints. The slope
σi of the line corresponding to each user i is the ratio of that
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Fig. 2. Two visualizations of user heterogeneity. The lines in the top graph
show the ratio of users’ requirements for two different resources, while the
lines in the bottom graph show the feasible allocation region. The slopes of
those lines reflect the ratio of two users’ requirements for each resource.

user’s requirements for the two resources. The heterogeneity of
users’ resource requirements can be captured with the variance
of the {σi}2: homogeneity occurs at 0 variance (all users have
the same resource requirements) and the dashed line becomes
straight. Heterogeneity increases with the variance of σ.

The second (bottom) visualization has as many dimensions
as there are different users. The axes correspond to the
jobs allocated to each user (two users here for simplicity of
drawing), with feasible allocations shown as shaded regions
bounded by linear resource constraints. The slopes τi reflect
the ratio of user 1’s and user 2’s requirements for resource
i. Again, the heterogeneity of users’ resource requirements
can be captured in the variance of the τi

3. Homogeneity
occurs when the variance is 0; in that case the resource
constraints have the same slope and reduce to one constraint.
Heterogeneity increases with the variance of τ .

B. Defining Multi-Resource Fairness

1) Fairness on Dominant Shares (FDS): As defined in
[1], a user’s dominant share is the maximum share of any
resource allocated to that user.

Let xj denote the number of jobs allocated to each user
j and Ci the capacity of each resource i. Then we have the
resource constraints

∑n
j=1Rijxj ≤ Ci for all resources i,

where Rij is the amount of resource i which user j requires

2We assume that the σi are realizations of a random variable σ.
3These are realizations of a random variable τ .

for one job, and there are n users. We let

µj = max
i

{
Rij
Ci

}
(2)

denote the maximum share of a resource required by user j
to process one job; then µjxj is user j’s dominant share.

We introduce the fairness measures fFDS
β,λ :

sgn(1− β)

 n∑
i=1

(
µixi∑n
j=1 µjxj

)1−β
 1

β ( n∑
i=1

µixi

)λ
. (3)

These fairness measures extend those developed in [4] for a
single resource; details on their derivation are given in that
work and the technical report [8]. Here β 6= 1 and λ are pre-
specified parameters. Note that β = 1 is a trivial case, since
(3) then reduces to n (

∑n
i=1 µixi)

λ, so that each allocation
gives equal fairness. We make a standard assumption that all
resources and all jobs are infinitely divisible, which is typical
of many multi-resource settings [16], [17]. An illustrative
example of FDS is given in Section III-B3.

The fairness function (3) may be divided into two compo-
nents, one representing fairness and one efficiency. The sum
of the dominant shares raised to the power λ represents effi-
ciency; thus, λ parametrizes efficiency’s relative importance.

The remainder of (3) is parametrized exclusively by β and
represents the fairness of the allocation. It is easily seen that
for any value of β 6= 1, this component of (3) is maximized at
an equal allocation. However, different values of β will yield
different orderings of unequal allocations. One allocation may
be more fair than another when β = β1 is used to parametrize
fairness, but the second allocation may be more fair than the
first when β = β2 6= β1 is used.

Though different values of β give different types of fairness,
we can generally say that “larger β is more fair.” As β →
∞, we obtain max-min fairness on the ratio of each user’s
dominant share to the sum of all the dominant shares. Since
a less equal allocation impacts max-min fairness more than it
would impact the fairness component of (3) at finite β, we
intuitively see that “larger β is more fair.”

As β → ∞ and λ = 1−β
β , the fairness function fβ,λ ap-

proaches max-min fairness on the dominant shares. Dominant
resource fairness (DRF), proposed in [1], is thus a special case
of FDS. Again letting µixi denote the dominant share of user
i, DRF can be expressed as

min {µ1x1, µ2x2, . . . , µnxn} (4)

where n is the number of users; maximizing this equation
subject to the constraints

∑n
j=1Rijxj ≤ Ci ∀ i yields the

DRF-optimal allocation. FDS is therefore a generalization of
DRF, in which choosing the parameters β and λ allows one
to achieve different tradeoffs between fairness and efficiency.

FDS also includes the well-known α-fairness family of
functions as a special case. This fact easily follows from
the relationship of the single-resource functions in [4] to
α-fairness, which is generally used to measure fairness in



4

bandwidth allocation (see references in Section II). Taking
α = β ≥ 0 and λ = 1−β

β , the FDS function (3) becomes

sgn(1− β)

(
n∑
i=1

(µixi)
1−β

) 1
β

; (5)

optimizing this function is equivalent to optimizing the α-
fairness function on dominant shares

n∑
i=1

(µixi)
1−α

1− α
. (6)

2) Generalized Fairness on Jobs (GFJ): Since some users
require more resources per job than others, it might be more
fair for those who require more resources to be allocated fewer
jobs, thus increasing efficiency across all users. FDS captures
this perspective. However, an individual user often cares only
about the number of jobs processed (without accounting for
heterogeneous resource requirements), and hence each user’s
notion of fairness may be based only on the number of jobs
(s)he is allocated. This motivates us to introduce another
fairness measure called Generalized Fairness on Jobs (GFJ),
which uses the number of jobs allocated (instead of dominant
shares) in the fairness function.

GFJ can be further motivated with bandwidth allocation
examples. The utility function used in these scenarios is
generally α-fairness applied to the bandwidth allocated to each
flow. These functions are therefore a special case of GFJ, a
family of functions given by

fGFJ
β,λ = sgn(1− β)

 n∑
i=1

(
xi∑n
j=1 xj

)1−β
 1

β ( n∑
i=1

xi

)λ
.

(7)
Here β and λ are two parameters (just as in FDS) and xi is
the number of jobs processed for user i. As for FDS, we have
the resource constraints

∑n
j=1Rijxj ≤ Ci for each resource

i. An illustrative example is given in the next section.
For β > 0 and λ = 1−β

β , GFJ reduces to α-fairness on the
number of jobs allocated to each user.

3) Differences between FDS and GFJ: We can summarize
FDS’ and GFJ’s approaches as follows:
• FDS measures fairness in terms of the relative size of the

dominant shares, explicitly accounting for heterogeneous
resource requirements in both the objective function and
the constraints. As a limiting case of FDS, DRF also
follows this approach.

• On the other hand, GFJ measures fairness only in terms
of the number of jobs allocated to each user; the het-
erogeneity in resource requirements only appears in the
resource constraints. Users requiring more resources are
thus treated equally, a result observed in Section IV.

When µj = µk for all j and k, FDS and GFJ are equivalent.
Revisiting the example in the Introduction, we have the

resource constraints 2x1 + 2x2 ≤ 6 and 3x1 + x2 ≤ 4. Thus,
the dominant share of user 1 is 3

4x1, since user 1 requires 3
4

of the available CPUs and 1
3 of the available memory for each
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Fig. 3. Overall schematic of our multi-resource fairness approach.

job. Similarly, the dominant share of user 2 is 1
3x2, since user

2 requires 1
3 of the available memory and 1

4 of the available
CPUs for each job. FDS and GFJ can then be expressed as

max
x1,x2

f(x1, x2) (8)

s.t. 2x1 + 2x2 ≤ 6, 3x1 + x2 ≤ 4,

where the fairness function is

f = sgn(1− β)

((
3x1

4

)1−β
+
(
x2

3

)1−β(
3x1

4 + x2

3

)1−β
) 1
β (

3x1
4

+
x2
3

)λ
for FDS and

f = sgn(1− β)

(
x1−β1 + x1−β2

(x1 + x2)
1−β

) 1
β

(x1 + x2)
λ

for GFJ.
Figure 3 illustrates the approaches to multi-resource fair-

ness. We transpose the matrix R to capture users’ resource
requirements; each row represents one user’s requirements.
One simplistic approach would assume perfectly substitutable
resources; in that case, this matrix immediately collapses into
a vector of users’ single resource requirements. However, this
substitutability often does not hold. For example, CPUs and
memory are not directly substitutable.

FDS and GFJ represent alternative approaches to the scalar-
ization of each row in Fig. 3’s matrix. FDS and its limiting
case DRF choose a dominant entry from the row vector of
users’ requirements. GFJ, on the other hand, scalarizes each
row by the number of jobs processed with a bundle of different
resources. These row-by-row scalarizations then yield another
vector of users’ scalars; evaluating fairness with fFDS

β,λ or fGFJ
β,λ

further reduces this vector to a final scalar quantifying fairness.

C. Properties of FDS and GFJ

We now look at the conditions of β and λ under which
FDS and GFJ satisfy important properties relevant to fairness
quantification and fairness-efficiency tradeoffs:
• What happens to the optimal allocations when users have

the same resource requirements?
• What fairness properties do FDS and GFJ satisfy? For

instance, are their optimal allocations Pareto-efficient?
Sharing incentive compatible? Envy-free?

• Does there always exist a fairness-efficiency tradeoff?
We consider n users and m different resources. Users have

the same resource requirements when they are homogeneous,
or their heterogeneity is zero. In the special cases n = 2 or
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m = 2, user heterogeneity may be easily visualized as in Fig.
2 in Section III-A.

Heterogeneity is measured by the variance in the slopes σi
or τi of Fig. 2. When all of users have the same ratios of
multi-resource requirements (i.e., the variance of the σi and
τi is zero), the problem reduces to that of a single resource:

Proposition 1: Suppose that the resource constraints may
be written as

ηi (µ1x1 + µ2x2 + . . .+ µnxn) ≤ 1, (9)

i = 1, 2, . . . ,m. Without loss of generality, suppose η1 =
maxi ηi. Then the problem reduces to single-resource fairness
on resource 1. Moreover, FDS and DRF both yield the alloca-

tion xj = 1
η1µjn

. GFJ yields the allocation xj =
µ
− 1
β

j

η1
∑n
i=1 µ

β−1
β

i

.

In this special case, we also have the following corollary:
Corollary 1: Let X = x1 + x2 + . . . + xn denote the

allocation efficiency. Then ∂X
∂µj

= −1
η1nµ2

j
for DRF and FDS,

and the efficiency of these allocations increases the fastest if
minj µj is decreased. For allocations that maximize GFJ,

∂X

∂µj
=

−µ−
1+β
β

j

η1β
∑n
i=1 µ

β−1
β

i

+
(1− β)µ−

1
β

j

∑n
i=1 µ

− 1
β

i

η1β

(∑n
i=1 x

β−1
β

i

)2 .

Thus, efficiency increases the most when minj µj is decreased.
In other words, the system’s efficiency will increase if the user
with the lowest µj gives up some resources.

We now consider heterogeneous users, and assume that
their resource requirements Rij are uniformly distributed in
[0, νCi], ν a given positive constant. Then as the number of
users n goes to infinity, the optimal FDS and GFJ values
converge as follows:

Proposition 2 (Optimal FDS and GFJ Values): The opti-
mal FDS value converges in probability as

lim
n→∞

(
max fFDS

∞,−1
)−1 · 2m

n(m+ 1)
= 1. (10)

Thus, users’ asymptotic dominant share is 1
n ·

2m
m+1 . In contrast,

the optimal GFJ value converges in probability as

lim
n→∞

(
max fGFJ

∞,−1
)−1 · 2

ν
(√

mn/3 + n
) = 1. (11)

Users are asymptotically allocated resources for 2
νn jobs.

We thus see that in the limit of a large number of hetero-
geneous users, with β = ∞ and λ = −1, the optimal FDS
value increases while the optimal GFJ value decreases as more
resources are added to the system. This proposition highlights
the fundamental difference between FDS and GFJ; in the limit,
they yield very different allocations.

We next turn our attention to fairness and its relationship
with efficiency, using three widely-used properties of fairness
functions (see e.g., [1] and the many references therein):

Definition 1: A function f is Pareto-efficient if, whenever
~x Pareto-dominates ~y (i.e., xi ≥ yi for each index i, and
xj > yj for some j), f(~x) > f(~y).

Definition 2: Sharing incentive is the property that no
user’s dominant share is less than 1

n : each user has an incentive
to not simply split the resources equally.

Definition 3: Envy-freeness holds if and only if no user
envies another user’s allocation. In other words, given any
user and a set of resources (s)he requires, no other user is
allocated a larger share of these resources than the given user.

We investigate if and when these properties are satisfied by
FDS and GFJ. Our results show that the answer depends on
the values of the parameters β and λ.

We first consider Pareto-efficiency. Evidently, this property
holds for large λ. Based on [4], we can in fact specify a
threshold for λ above which Pareto-efficiency holds:

Proposition 3 (Pareto-efficiency for FDS and GFJ): The
fairness functions (3) and (7) are Pareto-efficient if and only
if |λ| ≥

∣∣∣ 1−ββ ∣∣∣.
The absolute value signs are necessary, as for β > 1, (3)

and (7) are negative. For this range of β, a more negative
λ therefore emphasizes efficiency. As Pareto-efficiency is a
highly desirable property for fairness functions (both single
and multi-resource), the following analysis considers only
values of λ satisfying |λ| ≥

∣∣∣ 1−ββ ∣∣∣.
Proposition 4 (Sharing Incentive for FDS): Sharing incen-

tive is satisfied by the FDS-optimal allocation when λ = 1−β
β

and β > 1. For 0 ≤ β ≤ 1 and λ = 1−β
β , sharing incentive

may not be satisfied.

We can further bound the allocation efficiency:
Corollary 2 (Bounds on Allocation Efficiency for FDS): If

β > 0 and λ = 1−β
β , the efficiency

∑n
j=1 xj ≥

1
maxj µj

.
In contrast to FDS, GFJ need not always satisfy sharing
incentive (or, in fact, envy-freeness) even for β > 1:

Corollary 3 (Sharing Incentive for GFJ): If exactly one
resource constraint

∑n
j=1Rijxj ≤ Ci is tight at optimality

and for any β > 0, λ = 1−β
β , GFJ may not satisfy the sharing

incentive property.

For λ = 1−β
β , the FDS function becomes equivalent to the

isoelastic α-fair utility in economics; then β corresponds to a
measure of constant relative risk-aversion for individual users.4

As β increases, individual risk-averse users find the resource
allocation more equitable and become collectively envy-free.
The following proposition establishes that this interesting
envy-free behavior emerges (for FDS) at a threshold of β > 1.

Proposition 5 (Envy-freeness for FDS): For β > 0 and
λ = 1−β

β , i.e., the FDS function is the isoelastic or α-fair
utility function, envy-freeness holds if β > 1.

4Isoelasticity and relative risk-aversion in economics are defined as
∂u(x)
∂x

x
u(x)

and −xu
′′(x)

u′(x) respectively, where u is the utility function.
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In contrast, GFJ-optimal allocations need not be envy-free
for any value of β:

Corollary 4 (Envy-Freeness for GFJ): For any β > 0 and
λ = 1−β

β , envy-freeness may not be satisfied.

Next, we consider two ways in which a fairness-efficiency
tradeoff does not exist: first, an increased emphasis on fair-
ness need not decrease efficiency. Second, the efficiency-
maximizing allocation may also be the “most fair.”

Traditionally, a larger parameter α in α-fairness functions
is though to be “more fair;” this statement is made mathemat-
ically precise in [4]. In [11], however, it is shown that when
a network allocates bandwidth so as to maximize α-fairness,
total throughput in the network will sometimes increase with
α. It may even decrease as capacity increases. These “counter-
intuitive” results hold in the general multi-resource problem:

Consider the general family of utility functions U(~x, α);
here α is a parameter indexing the family of utility functions,
and the specific functional form of U is not specified. For
instance, we could use the functions in (3), with α = β
and λ = 1−β

β , so that the utility function uses “α-fairness.”
We incorporate the resource capacity constraints in the matrix
inequality R~x ≤ ~C, and assume that R is a full-rank matrix
consisting only of those constraints which are tight at the
optimal allocation ~x for the given value of α.

We let S be an (n − m) × n dimensional matrix whose
columns form a basis for the nullspace of R, and define E =∑n
j=1 xj as the total efficiency. The negative of the utility

function’s Hessian matrix is denoted by D, and we define
b = ∂2U

∂x∂α , A = STDS, vj = sTj b and βj = −1T sj , where
the sj are the columns of the matrix S. Let Ai denote the
matrix A with the ith row replaced by β = [β1 β2 · · ·βn].
We use δ to denote a direction of perturbation of the capacity
vector C and DE(δ) to denote the derivative of E in the
direction of δ. From [11], we have

∂E

∂α
= 1TS (A)

−1
ST b (12)

DE(δ) = 1T
∂x

∂C
δ = 1TD−1RT (RD−1RT )−1δ. (13)

We can further prove the following proposition:

Proposition 6 (Efficiency Non-Monotonicity): Efficiency
increases with α if and only if

N−L∑
i=1

videtAi ≥ 0. (14)

Moreover, efficiency may decrease with an increase in the
capacity vector ~C. If capacity increases proportionally, i.e.,
δ = ε ~C for some small ε, then DE(δ) ≥ 0.

As a special case, when only one capacity constraint is tight
(e.g., one resource), efficiency always increases with capacity.
The technical report [8] contains a numerical example in which
efficiency increases with β.

We next examine the conditions under which an equal
allocation (equal dominant shares for FDS or an equal number
of jobs for GFJ) maximizes efficiency. In these situations,
there is no fairness-efficiency tradeoff; the most fair allocation
maximizes the total number of jobs processed. As this property
is an ideal case, it will likely be satisfied only under rather
stringent conditions. Indeed, our results show that this ideal
case occurs only when the resource constraints “line up”
exactly.

We again express the resource constraints in matrix form
as R~x ≤ ~C, and simplify them to γ~x ≤ ~1m, where ~1m is a
vector of m 1’s and γij =

Rij
Ci

.

Proposition 7 (Maximizing Fairness and Efficiency (I)):
Suppose that m = n constraints are tight at the maximum-
efficiency allocation. Then this allocation equalizes the
dominant shares (FDS has no fairness-efficiency tradeoff) if
and only if

n∑
j=1

Rij
µj

=

n∑
j=1

Rkj
µj

(15)

for all resources i and k. The number of jobs per user is
equalized (GFJ has no fairness-efficiency tradeoff) if

n∑
j=1

Rij =

n∑
j=1

Rkj (16)

for all resources i and k.

Our conclusions are more subtle when m < n constraints
are tight at an efficiency-maximizing allocation:

Proposition 8 (Maximizing Fairness and Efficiency (II)):
Suppose that m < n constraints are tight at an efficiency-
maximizing allocation ~x∗. If this allocation is the unique
allocation maximizing efficiency, then at least one of the
x∗j = 0 and one user is allocated no jobs. If other allocations
also maximize efficiency, an allocation equalizing either the
dominant shares or number of jobs processed maximizes
efficiency if and only if at the equal allocation, the constraint
set intersects the hyperplane

∑n
j=1 xj =

∑n
j=1 x

∗
j on a set of

dimension at least 1.

Geometrically, if ~x∗ is not the unique efficiency-maximizing
allocation, then an equal allocation maximizes efficiency if and
only if one can “travel” from ~x∗ to the equal allocation in a
straight line along both the constraint set and the hyperplane∑n
j=1 xj =

∑n
j=1 x

∗
j .

We can use this proposition to derive a sufficient condi-
tion for the efficiency-maximizing allocation to equalize the
dominant shares or number of jobs for each user:

Corollary 5: Suppose m < n resource constraints hold at
the efficiency-maximizing allocation. Then if Rij > Rik for
some users j and k and all resources i, xj = 0 (user j is
allocated no jobs) at any efficiency-maximizing allocation.
If m = 1 (the single-resource case), this result implies the
following:
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Corollary 6: The maximum efficiency allocation equalizes
the dominant shares (FDS) or jobs per user (GFJ) if and only
if µj = µk ∀ users j and k. In other words, each user needs
the same amount of the single resource to process one job.

IV. APPLICATIONS AND ILLUSTRATIONS

We consider an illustrative example of a datacenter with
CPU and RAM constraints. There are two users, each of whom
requires a fixed amount of each resource to accomplish a job.
Jobs are assumed to be infinitely divisible [16], [17]. In order
to benchmark performance, we use the same parameters as
[1]: user 1 requires 1 CPU and 4 GB of RAM for each job,
and user 2 requires 3 CPUs and 1 GB of RAM for each job.
There are 9 CPUs and 18 GB of RAM.

Suppose that the fairness function is given by f (e.g. FDS
(3), DRF (4), GFJ (7)). Then the allocation problem is

max
x,y

f(x, y) (17)

s.t. x+ 3y ≤ 9, 4x+ y ≤ 18 (18)

where x and y are the number of jobs allocated to users 1 and
2 respectively.

We use DRF as the benchmark fairness to compare the
performance of our FDS and GFJ functions. We define percent
fairness as the percentage difference between the optimal
DRF fairness value (i.e., the minimum dominant share) and
the DRF fairness value of the allocation obtained from FDS
or GFJ. The percent efficiency is defined as the percentage
difference between the total number of jobs processed in the
given allocation and the maximum number of jobs that can
be processed, given the same capacity constraints. We also
introduce another efficiency measure, the leftover capacity
(i.e., the amount of unused resources).

We investigate the outcomes of the proposed fairness mea-
sures along two dimensions:
• Comparing the achieved efficiency when user heterogene-

ity and resource capacity are varied.
• Examining the range of attainable fairness-efficiency

tradeoffs for different values of the parameters β and λ.

A. Efficiency

We first use our two efficiency measures–leftover capac-
ity and percent efficiency–to investigate user heterogeneity’s
effect on achieved efficiency. For simplicity, we assume two
resources. Heterogeneity is measured by the variance in the
slopes τi of users’ resource requirements, as introduced in
Fig. 2 in Section III-A. If two users have identical resource
constraints, they become homogeneous, and the variance is
0. At the other extreme, the users do not share any resource
requirements; they become decoupled, with infinite variance.

We calculate the optimal FDS, GFJ and DRF allocations
for β = 2, λ = −0.5. First, Fig. 4 examines the leftover
capacity as a function of the variance in τ . The heterogeneity
was varied by changing the RAM requirement of user 2 from
1 GB to 13 GB. Thus, the RAM constraint line in Fig. 2’s
representation tilts from very steep to very flat. This tilting
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Fig. 4. Too much or too little variance in τ leads to inefficiency from
leftover capacity: Leftover capacity versus variance in user heterogeneity in a
datacenter example. Variances below 0.5 have only leftover CPUs; variances
above 0.5 have only leftover RAM.

geometrically explains the overall “V” trend in Fig. 4. When
the RAM requirement is below 3 GB (a steep constraint line),
the variance of τ is over 0.5 and only RAM is leftover. When
the RAM requirement is above 3 GB (a flatter line), the
variance of τ is less than 0.5 and only CPUs are leftover.
The change in the leftover resource is due to the changing
shape of the feasible region.

In this example, we see that for low heterogeneity in users’
resource requirements, FDS, GFJ and DRF have similar effi-
ciency values. In fact, Prop. 1 states that at zero heterogeneity,
DRF and FDS are optimized at the same allocation, predicting
part of the observed behavior. As the heterogeneity increases,
DRF has a lot of leftover capacity compared to GFJ and
FDS, especially for a variance larger than 1. DRF trades off
efficiency significantly to preserve users’ minimum dominant
share with increasingly heterogeneous resource requirements.
Even GFJ performs worse than FDS, which yields the lowest
leftover capacity. As FDS includes resource requirements in
its fairness function, we intuitively expect such a result.

We next examine the percent efficiency in jobs processed
as a function of the variance in τ in Fig. 5. As in the
previous figure, for low heterogeneity across users’ resource
requirements, FDS, GFJ and DRF perform at similar efficiency
levels. All three achieve full efficiency for a variance near 0.5.
Again, the efficiency attained is also much higher (about 15%)
for FDS and GFJ than for DRF as the variance increases.

In summary, enforcing DRF can significantly reduce ef-
ficiency as measured by either leftover capacity or percent
efficiency. In the technical report [8], we discuss a scenario
in which the number of users grows and their corresponding
τi are drawn from a uniform distribution. In this situation, the
FDS-optimal allocation becomes even more desirable from an
efficiency standpoint.

Finally, we examine the impact of changing RAM capacity
on the attainable efficiency levels. Figure 6 shows how varying
this capacity in the datacenter example affects the efficiency
attained at the optimal allocation. We see that when the
dominant shares for both users are equal, at 12 GB of RAM
capacity, GFJ and FDS have the same range of achievable
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Fig. 5. Greater variance in τ leads to DRF inefficiency in the number of
jobs processed: Percentage efficiency versus variance in user heterogeneity in
a datacenter example.
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Fig. 6. Capacity expansion can increase the range of operating efficiencies
for FDS and GFJ over DRF: Attainable efficiency for varying capacity
constraint, given different implicit realizations of β ∈ (−5, 5) and λ ∈
(0.01, 1.91) for β < 0, λ ∈

(
0.005

(
1
β
− 2

)
, 0.955

(
1
β
− 2

))
for β > 0

values in a datacenter example, using FDS and GFJ.

efficiency. Moreover, β and λ can be chosen to achieve higher
efficiency in FDS and GFJ. The DRF function thus serves as
a “lower bound” to the efficiency values attainable with the
FDS functions.

The impact of capacity expansion also highlights an interest-
ing dimension of the economy of scale in large networks. The
standard view is that a large scale helps smoothen temporal
fluctuations of demands through statistical multiplexing, e.g.,
at any aggregation point in a broadband access network. In
addition to temporal “heterogeneity” (bursting at different
times), network users may have resource type heterogeneity:
some applications need more CPU processing while others
need more storage or bandwidth. Can this heterogeneity be
exploited to more efficiently utilize different types of re-
sources? The answer depends on how these different resources
are allocated among the users. If DRF is used, for example,
efficiency can be quite low. However, by picking the right FDS
parametrization, resource request heterogeneity can indeed be
leveraged along with increases in resource capacity, and turned
into another type of economy of scale.

B. Fairness-Efficiency Tradeoffs

The previous section established that when users are very
heterogeneous, FDS and GFJ outperform DRF, achieving a
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Fig. 7. Larger β values lead to more equitable allocations: Optimal
allocations for various fairness measures in a datacenter example, using α = β
fairness for FDS and GFJ.

much greater efficiency. However, we expect that this larger
efficiency comes at a cost of decreased fairness. This section
examines the general behavior of fairness when a larger
efficiency is achieved. Here we measure fairness as percent
fairness with the DRF metric and efficiency as percent effi-
ciency on the number of jobs processed.

Figure 7 shows the optimal allocations of jobs for dif-
ferent values of β, λ = 1−β

β . With these β and λ values,
FDS and GFJ become α-fair on the dominant shares of and
jobs allocated to each user, respectively, for α = β. As β
increases, fairness is emphasized more than efficiency, and
FDS asymptotes to DRF. For small β (i.e., more relative
emphasis on efficiency than fairness), the optimal FDS al-
location maximizes efficiency. In the case of GFJ, which
emphasizes the fairness on jobs allocated, larger β values
produce a more fair allocation of jobs across users than FDS,
as expected. Consequently, the total number of jobs processed
(i.e., efficiency) is lower for GFJ than for FDS.

Figure 8 gives a representative plot of how this tradeoff
varies with β and λ = 1−β

β . As β grows larger, the percent
efficiency from the FDS measure drops, approaching DRF in
the limit β →∞. The GFJ fairness increases until β = 2.6, at
which point the GFJ-optimal allocation is also DRF-optimal.
(We see in Fig. 7 that the GFJ allocation “crosses” the DRF
allocation line at this value of β). For larger values of β, GFJ
quickly converges to an allocation with a more equal number
of jobs per user; thus, its efficiency decreases. But efficiency
in FDS decreases more slowly since FDS attempts to make
the dominant shares, not the number of jobs, more equitable.

Finally, we show the interaction between capacity con-
straints and the range of fairness-efficiency tradeoffs achieved.
The shaded region in Fig. 9 shows the attained tradeoffs for a
large range of β and λ values; each point corresponds to some
β and λ values in the FDS function, which achieve the shown
operating tradeoff. This achieved tradeoff, however, depends
on the available capacity, with contour lines for various RAM
capacities shown in the figure. As RAM capacity increases
from 4 GB to 12 GB, the tradeoff grows less pronounced:
one can increase both fairness and efficiency. When the RAM
capacity goes above 12 GB up to 25 GB, user 1’s dominant
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for β > 0 values in a datacenter

example, using FDS. DRF is used as the fairness benchmark and metric.

share of 4x1

RAM capacity decreases. Thus, an increase in fairness
requires an increase in x1 and user 1’s CPU allocation. User
2 then is allocated fewer jobs, decreasing efficiency. Although
in this figure, one can achieve 100% efficiency and fairness
when RAM capacity is 12 GB, such an ideal operating point
does not always exist. The technical report [8] gives such an
example for bandwidth allocation in networks. Similar plots
can also be obtained for GFJ functions.

Additional examples of the proposed fairness measures
applied to bandwidth allocation in a congested network are
also provided in the technical report [8].

V. CONCLUDING REMARKS

In this paper, we introduce FDS and GFJ, two families
of fairness functions for multi-resource allocations. FDS also
includes as a special case the recently-proposed generaliza-
tion of the max-min fairness measure for multiple resources.
Different parametrizations of these functions generate a range
of fairness-efficiency tradeoffs, thus allowing for different de-
grees of emphasis on fairness and efficiency that suit different
network operation needs.

We consider three key properties of fairness functions:
Pareto-efficiency, sharing incentive, and envy-freeness. FDS

and GFJ are both Pareto-efficient if |λ| ≥ 1−β
β . FDS satisfies

the sharing incentive property and is envy-free for β > 1 and
λ = 1−β

β ; if 0 < β < 1 and λ = 1−β
β , then sharing incentive

and envy-freeness are only sometimes satisfed. GFJ may or
may not be sharing-incentive compatible or envy-free for any
β > 0, λ = 1−β

β .
Several further extensions can be found in the technical

report [8]. For example, by adjusting our weights on each
user’s resource requirements, we develop an overarching fam-
ily of fairness functions which includes FDS, DRF and GFJ as
special cases. The sensitivity of fairness values with respect to
perturbation of each user’s resource request vector, especially
the slopes σi in Fig. 2, is also discussed.
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