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Abstract

We consider the problem of specifying combinations of data struc-
tures with complex sharing in a manner that is both declarative
and results in provably correct code. In our approach, abstract data
types are specified using relational algebra and functional depen-
dencies. We describe a language of decompositions that permit the
user to specify different concrete representations for relations, and
show that operations on concrete representations soundly imple-
ment their relational specification. It is easy to incorporate data
representations synthesized by our compiler into existing systems,
leading to code that is simpler, correct by construction, and compa-
rable in performance to the code it replaces.

Categories and Subject Descriptors D.3.3 [Programming Lan-

guages]: Language Constructs and Features—Abstract data types,
Data types and structures; E.2 [Data Storage Representations]

General Terms Languages, Design, Algorithms, Performance,
Verification

Keywords Synthesis, Composite Data Structures

1. Introduction

One of the first things a programmer must do when implementing
a system is commit to particular choices of data structures. For
example, consider a simple operating system process scheduler.
Each process has an ID pid , a state (running or sleeping), and
a variety of statistics such as the cpu time consumed. Since we
need to find and update processes by ID, we store processes in a
hash table indexed by pid ; as we also need to enumerate processes
in each state, we simultaneously maintain a linked list of running
processes and a separate list of sleeping processes.
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Figure 1. Schematic of Data Representation Synthesis.

Whatever our choice of data structures, it has a pervasive influ-
ence on the subsequent code, and as requirements evolve it is diffi-
cult and tedious to change the data structures to match. For exam-
ple, suppose we add virtualization support by allowing processes
with the same pid number to exist in different namespaces ns , to-
gether with the ability to enumerate processes in a namespace. Ex-
tending the existing data structures to support the new requirement
may require many changes throughout the code.

Furthermore, invariants on multiple, overlapping data structures
that represent different views of the same data are hard to state,
difficult to enforce, and easy to get wrong. For the scheduler, we
require that each process appears in both the hash-table indexed
by process ID and exactly one of the running or sleeping lists. Such
invariants must be enforced by every piece of code that manipulates
the scheduler’s data structures. It is easy to forget a case, say by
failing to add a process to the appropriate list when it changes state
or by failing to delete a hash table entry when a process terminates.
Invariants of this nature require deep knowledge about the heap’s
structure, and are difficult to enforce through existing static analysis
or verification techniques.

We propose a new method termed data representation synthesis,
depicted in Figure 1. In our approach, a data structure client writes
code that describes and manipulates data at a high-level as rela-

tions; a data structure designer then provides decompositions which
describe how those relations should be represented in memory as a
combination of primitive data structures. Our compiler RELC takes
a relation and its decomposition and synthesizes efficient and cor-
rect low-level code that implements the relational interface.

Synthesis allows programmers to describe and manipulate data
at a high level as relations, while giving control of how relations
are represented physically in memory. By abstracting data from its
representation, programmers no longer prematurely commit to a

38



particular representation of data. If programmers want to change or
extend their choice of data structures, they need only change the de-
composition; the code that uses the relation need not change at all.
Synthesized representations are correct by construction; so long as
the programmer conforms to the relational specification, invariants
on the synthesized data structures are automatically maintained.

We build on our previous work [12], which introduced the idea
of synthesizing shared low-level data structures from a high-level
relational description. Our theoretical framework is substantially
simpler and more flexible. In particular, we can handle destructive
updates to relations while still preserving all relation invariants. We
have also implemented a compiler for relational specifications and
an autotuner that finds the best decomposition for a relation auto-
matically. Finally, we have integrated synthesized data representa-
tions into existing C++ code as a proof of concept.

Each section of this paper highlights a contribution of our work:
• We describe a new scheme for synthesizing efficient low-level

data representations from abstract relational descriptions of data
(Section 2). We describe a relational interface that abstracts data
from its concrete representation.

• The decomposition language (Section 3) specifies how rela-
tions should be mapped to low-level physical implementations,
which are assembled from a library of primitive data struc-
tures. The decomposition language provides a new way to spec-
ify high-level heap invariants that are difficult or impossible to
express using standard data abstraction or heap-analysis tech-
niques. We describe adequacy conditions that ensure a decom-
position faithfully represents a relation.

• We synthesize efficient implementations of queries and updates
to relations, tailored to the specified decomposition (Section 4).
Key to our approach is a query planner that chooses an efficient
strategy for each query or update. We show queries and updates
are sound, that is, each query or update implementation faith-
fully implements its relational specification.

• A programmer may not know the best decomposition for a
particular relation. We describe an autotuner (Section 5), which
given a relational specification and a performance metric finds
the best decomposition up to a user-specified bound.

• The compiler RELC (Section 6) takes as input a relation and its
decomposition, and generates C++ code implementing the re-
lation, which is easily incorporated into existing systems. We
show different decompositions lead to very different perfor-
mance characteristics. We incorporate synthesis into three real
systems, namely a web server, a network accounting daemon
and a map viewer, in each case leading to code that is simpler,
correct by construction, and comparable in performance.

2. Relational Abstraction

We first introduce the relation abstraction via which data structure
clients manipulate synthesized data representations. Representing
and manipulating data as relations is familiar from databases, and
our interface is largely standard. We use relations to abstract a pro-
gram’s data from its representation. Describing particular represen-
tations is the task of the decomposition language of Section 3.

A relational specification is a set of column names C and func-
tional dependencies ∆. In the scheduler example from Section 1 a
natural way to model the processes is as a relation with columns
{ns, pid , state, cpu}, where the values of state are drawn from
the set {S,R}, representing sleeping and running processes re-
spectively, and the other columns have integer values. Not every
relation represents a valid set of processes; all meaningful sets of
processes satisfy a functional dependency ns, pid → state, cpu ,
which allows at most one state or cpu value for any given process.

To formally define relational specifications, we need to fix notation
for values, tuples, and relations:

Values, Tuples, Relations We assume a set of untyped values v
drawn from a universe V that includes the integers (Z ⊆ V). A
tuple t = �c1: v1, c2: v2, . . . � maps a set of columns {c1, c2, . . . }
to values drawn from V. We write dom t for the columns of t. A
tuple t is a valuation for a set of columns C if dom t = C. A
relation r is a set of tuples {t1, t2, . . . } over identical columns C.
We write t(c) for the value of column c in tuple t. We write t ⊇ s if
the tuple t extends tuple s, that is t(c) = s(c) for all c in dom s. We
say tuple t matches tuple s, written t ∼ s, if the tuples are equal on
all common columns. Tuple t matches a relation r, written t ∼ r, if
t matches every tuple in r. We write s� t for the merge of tuples s
and t, taking values from t wherever the two disagree on a column’s
value. For example, the scheduler might represent three processes
as the relation:

rs = { �ns: 1, pid : 1, state:S, cpu: 7� ,
�ns: 1, pid : 2, state:R, cpu: 4� ,
�ns: 2, pid : 1, state:S, cpu: 5�}

(1)

Functional Dependencies A relation r has a functional depen-

dency (FD) C1 → C2 if any pair of tuples in r that are equal on
columns C1 are also equal on columns C2. We write r |=fd ∆ if
the set of FDs ∆ hold on relation r. If a FD C1 → C2 is a conse-
quence of FDs ∆ we write ∆ �fd C1 → C2. Sound and complete
inference rules for functional dependencies are well-known.

Relational Algebra We use the standard notation of relational al-
gebra. Union (∪), intersection (∩), set difference (\), and symmet-
ric difference (�) have their usual meanings. The operator πC r
projects relation r onto a set of columns C, and r1 �� r2 is the
natural join of relation r1 and relation r2.

Relational Operations We provide five operations for creating
and manipulating relations. Here we represent relations as ML-like
references to a set of tuples; ref x denotes creating a new reference
to x, !r fetches the current value of r and r ← v sets the current
value of r to v:

empty () = ref ∅
insert r t = r ← !r ∪ {t}

remove r s = r ← !r \ {t ∈ !r | t ⊇ s}
update r s u = r ← {if t ⊇ s then t � u else t | t ∈ !r}
query r s C = πC{t ∈ !r | t ⊇ s}

Informally, empty () creates a new empty relation. The opera-
tion insert r t inserts tuple t into relation r, remove r s removes
tuples matching tuple s from relation r, and update r s u applies
the updates in tuple u to each tuple matching s in relation r. Finally
query r s C returns the columns C of all tuples in r matching tuple
s. The tuples s and u given as arguments to the remove, update
and query operations may be partial tuples, that is, they need not
contain every column of relation r. Extending the query operator
to handle comparisons other than equality or to support ordering is
straightforward; however, for clarity of exposition we restrict our-
selves to queries based on equalities.

For the scheduler example, we call empty () to obtain an empty
relation r. To insert a new running process into r, we invoke:

insert r �ns: 7, pid : 42, state:R, cpu: 0�
The operation

query r �state:R� {ns, pid}
returns the namespace and ID of each running process in r, whereas

query r �ns: 7, pid : 42� {state, cpu}
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Figure 2. Data representation for a process scheduler: (a) a de-
composition, (b) an instance of that decomposition. Solid edges
represent hash tables, dotted edges represent vectors, and dashed
edges represent doubly-linked lists.

returns the state and cpu of process 42 in namespace 7. By invoking

update r �ns: 7, pid : 42� �state:S�

we can mark process 42 as sleeping, and finally by calling

remove r �ns: 7, pid : 42�

we can remove the process from the relation.
The RELC compiler emits C++ classes that implement the rela-

tional interface, which client code can then call. For the scheduler
relation example the compiler generates the class:

class scheduler_relation {
void insert(tuple_cpu_ns_pid_state const &r);
void remove(tuple_ns_pid const &pattern);
void update(tuple_ns_pid const &pattern,

tuple_cpu_state const &changes);
void query(tuple_state const &input,

iterator_state__ns_pid &output);
...

};

Each method of the class instantiates a relational operation. We
could generate instantiations of each operation for all possible
kinds of tuples passed as arguments, however in practice we allow
the programmer to specify the needed instantiations.

3. Decompositions and Decomposition Instances

Decompositions describe how to represent relations as a combi-
nation of primitive data structures. Our goal is to prove that the
low-level representation of a relation faithfully implements its high-
level specification. In this section, we develop the technical ma-
chinery to reason about the correspondence between relations and
their decompositions.

A decomposition is a static description of the structure of data,
akin to a type. Its run-time (dynamic) counterpart is the decomposi-

tion instance, which describes the representation of a particular re-
lation using the decomposition. We define an abstraction function

that computes the relation represented by a given decomposition
instance, and well-formedness criteria that check that a decompo-
sition instance is a well-formed instance of a particular decompo-
sition. Finally, we define adequacy conditions which are sufficient
conditions for a decomposition to faithfully represent a relation.

3.1 Decompositions

A decomposition is a rooted, directed acyclic graph that describes
how to represent a relational specification. The subgraph rooted at
each node of the decomposition describes how to represent part of

p̂ ::= C | C ψ�−→ v | p̂1 �� p̂2 decomposition primitives

d̂ ::= let v: C1 � C2 = p̂ in d̂ | v decompositions
ψ ::= dlist | htable | vector | · · · data structures

Figure 3. The decomposition language.

p ::= t | {t �→ vt� , . . . } | p1 �� p2 instance primitives
d ::= let {vt = p, . . . } in d | v�� instances

Figure 4. Decomposition instances.

the original relation; each edge of the decomposition describes a
way of breaking up a relation into a set of smaller relations.

We use the scheduler example to explain the features of the de-
composition language. Figure 2(a) shows one possible decomposi-
tion for the scheduler relation. Informally, this decomposition reads
as follows. From the root (node x), we can follow the left-hand
edge, which uses a hash table to map each value n of the ns field to
a sub-relation (node y) with the {pid , cpu} values for n. From one
such sub-relation, the outgoing edge of node y maps a pid (using
another hashtable) to a sub-relation consisting of a single tuple with
one column, the corresponding cpu time. The state field is not rep-
resented on the left-hand path. Alternatively, from the root we can
follow the right-hand edge, which maps a process state (running
or sleeping) to a sub-relation of the {ns, pid , cpu} values of the
processes in that state. Each such sub-relation (rooted at node z)
maps a {ns, pid} pair to the corresponding cpu time. While the
left path from x to w is implemented using a hash table of hash
tables, the right path is a vector with two entries, one pointing to a
list of running processes, the other to a list of sleeping processes.
Because node w is shared, there is only one physical copy of each
cpu value, shared by the two access paths.

A decomposition instance, or instance for short, is a rooted, di-
rected acyclic graph representing a particular relation. Each node
of a decomposition corresponds to a set of nodes in an instance of
that decomposition. Figure 2(b) shows an instance of the decom-
position representing the relation rs defined in Equation (1). The
structure of an instance corresponds to a low-level memory state;
nodes are objects in memory and edges are data structures navi-
gating between objects. Note, for example, node z�state:S� has two
outgoing edges, one for each sleeping process; the dashed edge in-
dicates that the collection of sleeping processes is implemented as
a doubly-linked list.

To reason formally about decompositions and decomposition
instances we encode graphs in a let-binding notation, using the
language shown in Figure 3 for decompositions and Figure 4 for
instances. We stress that this notation is isomorphic to the graph
notation and only exists to aid formal reasoning.

The decomposition of Figure 2(a) written in let-notation is:
let w: {ns, pid , state} � {cpu} = {cpu} in

let y: {ns} � {pid , cpu} = {pid} htable�−−−→ w in

let z: {state} � {ns, pid , cpu} = {ns, pid} dlist�−−→ w in

let x: ∅ � {ns, pid , cpu, state} =

({ns} htable�−−−→ y) �� ({state} vector�−−−→ z) in x

(2)

In a decomposition a let-binding let v: B � C = p̂ in d̂ allows
us to share instances of the sub-relation v with decomposition p̂
between multiple parts of a decomposition d̂. Let-bound variables
must be distinct (to avoid name conflicts) and in let v: B � C =
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p̂ in d̂, variable v must appear in d̂ (to ensure the decomposition
graph is connected). Each decomposition variable is annotated with
a “type,” consisting of a pair of column sets B � C; every instance
of variable v in a decomposition instance has a distinct valuation
of columns B, and each such instance represents a relation with
columns C. Figure 2(b) written in the let-notation of instances is:
let

�
w�ns: 1,pid: 1,state:S� = �cpu: 7� ,
w�ns: 1,pid: 2,state:R� = �cpu: 4� ,
w�ns: 2,pid: 1,state:S� = �cpu: 5�

�
in

let
�
y�ns: 1� = {�pid : 1� �→ w�ns: 1,pid: 1,state:S�,

�pid : 2� �→ w�ns: 1,pid: 2,state:R�},
y�ns: 2� = {�pid : 1� �→ w�ns: 2,pid: 1,state:S�}

�
in

let
�
z�state:S� = {�ns: 1, pid : 1� �→ w�ns: 1,pid: 1,state:S�,

�ns: 2, pid : 1� �→ w�ns: 2,pid: 1,state:S�},
z�state:R� = {�ns: 1, pid : 2� �→ w�ns: 1,pid: 2,state:R�}

�
in

let
�
x�� = {�ns: 1� �→ y�ns: 1�, �ns: 2� �→ y�ns: 2�}

�� {�state:S� �→ z�state:S�, �state:R� �→ z�state:R�}
�
in x��

Each let-binding in the instance parallels a binding of v:B � C
in the decomposition; the instance binds a set of variable instances
{vt, vt� , . . . }, each for different valuations of columns B. For ex-
ample, decomposition node z has two different instances z�state:S�
and z�state:R�, one for each state value in the relation.

We now describe the three decomposition primitives and their
corresponding decomposition instance primitives.
• A unit C represents a single tuple t with columns C. Unit

decompositions in diagrams are nodes labeled with columns C.
For example, in Figure 2(a) node w is a unit decomposition
containing a single cpu value.

• A map C
ψ�−→ v represents a relation as a mapping {t �→

vt� , . . . } from a set of columns C, called key columns, to a set
of residual relations rt� , one for each valuation t of the key
columns. Each residual relation rt� is in turn represented by the
decomposition v. The data structure used to implement the map
is ψ, which can be any data structure that implements a key-
value associative map interface. In the example ψ is one of dlist
(an unordered doubly-linked list of key-value pairs), htable (a
hash table), or vector (an array mapping keys to values). The set
of data structures is extensible; any data structure implementing
a common interface may be used. The choice of ψ only affects
the computational complexity of operations on a data structure;
where the complexity is irrelevant we omit ψ and simply write
C �→ v. In diagrams we depict map decompositions as edges
labeled with the set of columns C. For example, in Figure 2(a)
the edge from y to w labeled pid indicates that for each instance
of vertex y in a decomposition instance there is a data structure
that maps each value of pid to a different residual relation,
represented using the decomposition rooted at w.

• A join p̂1 �� p̂2 represents a relation as the natural join of
two different sub-relations r1 and r2, where p̂1 describes how
to decompose r1 and p̂2 describes how to decompose r2. In
diagrams, join decompositions exist wherever multiple map
edges exit the same node. For example, in Figure 2(a) node x
has two outgoing map edges and hence is the join of two map
decompositions.

3.2 Abstraction Function

The abstraction functions α(d,Γ) and α(p,Γ) map instances d and
instance primitives p, respectively, to the relation they represent.
Argument Γ is an environment that maps instance variables to

(WFUNIT)
dom t = C

Γ, t |= Γ̂, C
(WFMAP)

∀t ∈ T. dom t = C
t ∼ α(vt� ,Γ) Γ, vt� |= Γ̂, v

Γ, {t �→ vt�}t∈T |= Γ̂, C �→ v

(WFJOIN)

Γ, p1 |= Γ̂, p̂1 Γ, p2 |= Γ̂, p̂2
r1 = α(p1,Γ) r2 = α(p2,Γ)

πdom r2 r1 = πdom r1 r2

Γ, p1 �� p2 |= Γ̂, p̂1 �� p̂2

(WFVAR)
Γ,Γ(vt) |= Γ̂, Γ̂(v)

Γ, vt |= Γ̂, v

(WFLET)

∀t ∈ T. dom t = B
Γ ∪ {vt �→ pt}t∈T , d |= Γ̂ ∪ {v �→ p̂}, d̂

Γ, let {vt = pt}t∈T in d |= Γ̂, let v:B � C = p̂ in d̂

Figure 5. Well-formed instances: Γ, d |= Γ̂, d̂ and Γ, p |= Γ̂, p̂

definitions. We write · to denote the initial empty environment.

α(t,Γ) = {t}

α({t �→ vt�}t∈T ,Γ) =
�

t∈T

�
{t} �� α(vt� ,Γ)

�

α(p1 �� p2,Γ) = α(p1,Γ) �� α(p2,Γ)

α(let {vt = pt}t∈T in d,Γ) = α(d,Γ ∪ {vt �→ pt | t ∈ T})
α(vt,Γ) = {α (Γ(vt),Γ)}

3.3 Well-formed Decomposition Instances

Next we introduce a well-formedness invariant ensuring that the
structure of an instance d corresponds to that of a decomposition d̂.
We say that a decomposition instance d is a well-formed instance

of a decomposition d̂ if ·, d |= ·, d̂ follows from the rules given
in Figure 5. The first argument to the judgment is an environment
Γ mapping instance variables to definitions; similarly the third
argument Γ̂ is an environment mapping decomposition variables to
definitions. Rule (WFUNIT) checks that a unit node is a tuple with
the correct columns. Rule (WFMAP) checks that each key tuple t
has the correct columns, that t matches all tuples in the associated
residual relation, and that variable instance vt� is well-formed. Rule
(WFJOIN) checks that we do not have “dangling” tuples on one
side of a join without a matching tuple on the other side. Rule
(WFLET) introduces variables into environments Γ and Γ̂ and
checks variable instantiations have the correct columns. Finally rule
(WFVAR) checks the definition of a variable is well-formed.

3.4 Adequacy of Decompositions

Not every relation can be represented by every decomposition. In
general a decomposition can only represent relations with specific
columns satisfying certain functional dependencies. For example
the decomposition d̂ in Figure 2(a) cannot represent the relation

r� = { �ns: 1, pid : 2, state:S, cpu: 42� ,
�ns: 1, pid : 2, state:R, cpu: 34�},

since for each pair of ns and pid values the decomposition d̂ can
only represent a single value for the state and cpu fields. However
r� does not correspond to a meaningful set of processes—the rela-
tional specification in Section 2 requires that all well-formed sets of
processes satisfy the functional dependency ns, pid → state, cpu ,
which allows at most one state or cpu value for any given process.

We say that a decomposition d̂ is adequate for relations with
columns C satisfying FDs ∆ if ·; ∅ �a,∆ d̂;C follows from the rules
in Figure 6. The first argument to the judgement is an environment
Σ that maps a variable v bound in the context to a pair B�C, where
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(AVAR)
(v: ∅ � C) ∈ Σ

Σ; ∅ �a,∆ v;C
(AUNIT)

A �= ∅ ∆ �fd A → C

Σ;A �a,∆ C;C

(AMAP)

(v:A �D) ∈ Σ
∆ �fd B ∪ C → A A ⊇ B ∪ C

Σ;B �a,∆ C �→ v;C ∪D

(AJOIN)

∆ �fd A ∪ (B ∩ C) → B � C
Σ;A �a,∆ p̂1;B Σ;A �a,∆ p̂2;C

Σ;A �a,∆ p̂1 �� p̂2;B ∪ C

(ALET)
Σ;B �a,∆ p̂;C Σ, v:B � C;A �a,∆ d̂;D

Σ;A �a,∆ let v:B � C = p̂ in d̂;D

Figure 6. Adequacy rules: Σ;A �a,∆ d̂;B and Σ;A �a,∆ p̂;B

B is the set of columns bound on any path to node v from the root
of the decomposition, and C is the set of columns bound within the
subgraph rooted at v. The second argument A is a set of columns
fixed by the context. If a decomposition d̂ is adequate, then it can
represent every possible relation with columns C satisfying FDs ∆:

Lemma 1 (Soundness of Adequacy). If ·; ∅ �a,∆ d̂;C then for each
relation r with columns C such that r |=fd ∆ there is some d such
that ·, d |= ·, d̂ and α(d, ·) = r.

The adequacy rules enforce several properties, most of which
are boundary conditions. Rule (AVAR) ensures the root vertex has
exactly one instance (since ∅ has only one valuation). Rules (AU-
NIT) and (AMAP) record the columns they contain, and the top-
level rule (AVAR) then ensures the decomposition represents all
columns of the relation. Rule (AUNIT) also ensures that unit de-
compositions are not part of the graph root. Since a unit decompo-
sition represents exactly one tuple, a unit decomposition at the root
(A = ∅) would prevent us from representing the empty relation.

Rule (AMAP) is the most involved and consequential rule.
Sharing occurs when the same variable is the target of two or
more maps (see the uses of variable w in (2) for an example).
Rule (AMAP) checks in two steps that decomposition instances
are shared only when the corresponding relations are equal. First,
note that B ∪ C are columns bound from the root to v, and the
functional dependency B ∪ C → A guarantees there is a unique
valuation of A per valuation of B ∪ C. Second, the requirement
that A ⊇ B ∪ C guarantees that A includes all the columns bound
on all paths reaching v (since this same requirement is also applied
to other map edges that share v). Because B ∪ C → A, and A
includes any other key columns used in other maps reaching v, the
sub-relation reached via any of these alternative paths is the same.

To split a relation into two parts using a join decomposition, rule
(AJOIN) requires a functional dependency that ensures that we can
match tuples from each side without anomalies, such as missing
or spurious tuples; recall � denotes symmetric difference. Finally
rule (ALET) introduces variable typings from let bindings into the
variable binding environment Σ.

4. Querying and Updating Decomposed Relations

In Section 3 we introduced decompositions, which describe how to
represent a relation in memory as a collection of data structures.
In this section we show how to compile the relational operations
described in Section 2 into code tailored to a particular decompo-
sition. There are two basic kinds of relational operation, namely
queries and mutations. Since we use queries when implementing
mutations, we describe queries first.

q ::= qunit | qscan(q) | qlookup(q) | qlr(q, lr) | qjoin(q1, q2, lr)
lr ::= left | right

Figure 7. Query Plan Operators

4.1 Queries and Query Plans

Recall that the query operation retrieves data from a relation; given
a relation r, a tuple t, and a set of columns C, a query returns
the projection onto columns C of the tuples of r that match tuple
t. We implement queries in two stages: query planning, which at-
tempts to find the most efficient execution plan q for a query, and
query execution, which evaluates a particular query plan over a de-
composition instance. This approach is well-known in the database
literature, although our formulation is novel.

In the RELC compiler, query planning is performed at compile
time; the compiler generates specialized code to evaluate the cho-
sen plan q with no run-time planning or evaluation overhead. The
compiler is free to use any method it likes to chose a query plan,
as long as the resulting query satisfies the query validity criteria
described in Section 4.2. We describe the query planner implemen-
tation of the RELC compiler in Section 4.3.

As a motivating example, suppose we want to find the set of pid
values of processes that match the tuple �ns: 7, state:R� using the
decomposition of Figure 2. That is, we want to find the running
processes in namespace 7. One possible strategy would be to look
up �state:R� on the right-hand side, and then to iterate over all
ns, pid pairs associated with the state, checking to see whether
they are in the correct namespace. Another strategy would be to
look up namespace 7 on the left-hand side, and to iterate over
the set of pid values associated with the namespace. For each
pid we then check to see whether the ns and pid pair is in the
set of processes associated with �state:R� on the right-hand side.
Each strategy has a different computational complexity; the query
planner enumerates the alternatives and chooses the “best” strategy.

We describe the semantics of query execution using a function
dqexec q d t which takes a query plan q, a decomposition instance
d, an input tuple t, and evaluates the plan over the decomposition,
and produces a set of tuples in the denotation of d that match tuple
t. We do not implement dqexec directly; instead the compiler emits
instances of dqexec specialized to particular queries q.

A query plan is a tree of query plan operators, shown in Fig-
ure 7. The query plan tree is superimposed on a decomposition and
rooted at the decomposition’s root. A query plan prescribes an or-
dered sequence of nodes and edges of the decomposition instance
to visit. There are five query plan operators:

Unit The qunit operator returns the unique tuple represented by a
unit decomposition instance if that tuple matches t. It returns
the empty set otherwise.

Scan The operator qscan(q) invokes operator q for each child node
vs where s matches t. Recall a map primitive is a mapping
from a set of key columns C to a set of child nodes {vt}t∈T .
Since operator qscan iterates over the contents of a map data
structure, it typically takes time linear in the number of entries.

Lookup The qlookup(q) operator looks up a particular set of key
values in a map decomposition; each of the key columns of
the map must be bound in the tuple t given as input to the
operator. Query operator q is invoked on the resulting sub-
decomposition, if any. The complexity of the qlookup depends
on the particular choice of data structure ψ. In general, we
expect qlookup to have better time complexity than qscan.
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Left/Right The qlr(q, lr) operator performs query q on either the
left-hand or right-hand side of a join specified by the argument
lr . The other side of the join is ignored.

Join The qjoin(q1, q2, lr) operator performs a join across both
sides of a join decomposition. The computational complexity
of the join may depend on the order of evaluation. If lr is the
value left, then first query q1 is executed on the left side of the
join decomposition, then query q2 is executed on the right side
of the join for each tuple returned by tuple q1; the result of the
join operator is the natural join of the two subqueries. If lr is the
value right, the two queries are executed in the opposite order.

In the scheduler example, the query

query r �ns: 7, pid : 42� {cpu}
returns the cpu values associated with the process with pid 42 in
namespace 7. One possible query plan is:

qcpu = qlr(qlookup(qlookup(qunit)), left).

To perform query qcpu on an instance d we evaluate

dqexec qcpu d �ns: 7, pid : 42�
which first looks up namespace 7 in the data structure correspond-
ing to decomposition edge from x to y, returning an instance of
node y. We lookup pid 42 in the data structure corresponding to the
edge from y to w, obtaining an instance of node w. We then use the
qunit operator to retrieve the cpu value associated with node w.

Recall our motivating example, namely the query

query r �ns: 7, state:R� {pid}
that returns the set of running processes in namespace 7. Two plans
that implement the query are

q1 = qjoin
�
qlookup(qscan(qunit)),

qlookup(qlookup(qunit)), left
�

q2 = qlr
�
qlookup(qscan(qunit)), right

�
.

Plan q1 first enumerates the set of processes with ns 7 (the left-
hand side of the join), and then checks whether each process is
associated with the running state (the right-hand side of the join).
Plan q2 iterates over all processes in the running state, checking to
see whether they are in the appropriate namespace.

An important property of the query operators is that they all re-
quire only constant space; there is no need to construct intermediate
data structures to execute a query. Having a predictable space over-
head for queries ensures that query execution does not need to al-
locate memory. Constant-space queries can also be a disadvantage;
for example, the current restrictions would not allow a “hash-join”
strategy for implementing the join operator, nor is it possible to per-
form duplicate-elimination. It would be straightforward to extend
the query language with non-constant-space operators.

4.2 Query Validity

Not every query plan is a correct strategy for evaluating a query.
We must check three properties: first that queries produce all of
the columns requested as output, second that when performing a
lookup we already have all of the necessary key columns, and third
that enough columns are computed on each side of a join so that
tuples from each side can be accurately matched with one another.
Figure 8 gives inference rules for a validity judgment that is a
sufficient condition for query plan correctness. We say a query plan
is valid, written Γ̂, d̂, A �q,∆ q,B if q correctly answers queries
over decomposition d̂, where A is the set of columns bound in
the input tuple pattern t and B is the set of columns bound in
the output tuples; Γ̂ is an environment that maps variables in the
decomposition to their definitions, whereas ∆ is a set of FDs.

(QUNIT)

Γ̂, C,A �q,∆ qunit, C

(QSCAN)
Γ̂, Γ̂(v), (A ∪ C) �q,∆ q,B

Γ̂, C �→ v,A �q,∆ qscan(q), B ∪ C

(QLOOKUP)
C ⊆ A Γ̂, Γ̂(v), A �q,∆ q,B

Γ̂, C �→ v,A �q,∆ qlookup(q), B ∪ C

(QJOIN)

Γ̂, p̂1, A �q,∆ q1, B1 Γ̂, p̂2, A ∪B1 �q,∆ q2, B2

∆ �fd A ∪B1 → B2 ∆ �fd A ∪B2 → B1

Γ̂, p̂1 �� p̂2, A �q,∆ qjoin(q1, q2, left), B1 ∪B2

or Γ̂, p̂2 �� p̂1, A �q,∆ qjoin(q2, q1, right), B1 ∪B2

(QLR)
Γ̂, p̂1, A �q,∆ q,B

Γ̂, p̂1 �� p̂2, A �q,∆ qlr(q, left), B
or Γ̂, p̂2 �� p̂1, A �q,∆ qlr(q, right), B

(QVAR)
Γ̂, Γ̂(v), A �q,∆ q,B

Γ̂, v, A �q,∆ q,B

(QLET)
Γ̂ ∪ {v �→ p̂}, d̂, A �q,∆ q,B

Γ̂, let v: · · · = p̂ in d̂, A �q,∆ q,B

Figure 8. Validity of query plans: Γ̂, d̂, A �q,∆ q,B

Rule (QUNIT) states that querying a unit decomposition binds
its fields. Rule (QSCAN) states when scanning over a map decom-
position we bind the keys of the map both as input to the sub-query
and in the output. Rule (QLOOKUP) is similar, however lookups
require that the key columns already be bound in the input. Rule
(QJOIN) requires that each subquery of a join must bind enough
columns so that we can match the results of the two subqueries
without any ambiguity. As a special case, rule (QLR) allows ar-
bitrary queries that only inspect one side of a join. Finally rules
(QVAR) and (QLET) handle introduction and elimination of de-
composition variables into the variable binding environment Γ̂.

Lemma 2 (Decomposition Query Soundness). Suppose we have
d̂, C, ∆, d, and r such that decomposition d̂ is adequate (i.e.,
·; ∅ �a,∆ d̂;C), instance d is well-formed (i.e., ·, d |= ·, d̂), and
d represents a relation r (i.e., α(d, ·) = r) satisfying the FDs ∆
(i.e., ∆ |=fd r). If a query plan q is valid for input tuples with
columns A and produces columns B (i.e., ·, d̂, A �q,∆ q,B), then
for any tuple s with dom s = A we have

πB(dqexec q d s) = πB{t ∈ r | t ⊇ s}.

4.3 Query Planner

To pick good implementations for each query, the compiler uses
a query planner that finds the query plan with the lowest cost
as measured by a heuristic cost estimation function. The query
planner enumerates the set of valid query plans for a particular
decomposition d, input columns B, and output columns C, and
it returns the plan with the lowest cost. It is straightforward to
enumerate query plans, although there may be exponentially many
possible plans for a query.

The RELC compiler uses a simple query cost estimator EΓ̂
that has performed well in our experiments. Many extensions to
our cost model are possible, inspired by the large literature on
database query planning. For every edge from node v1 to node v2
in a decomposition d̂ we require a count c(v1, v2) of the expected
number of instances of the edge outgoing from any given instance
of node v1. The count can be provided by the user, or recorded
as part of a profiling run. Each data structure ψ must provide a
function mψ(n) that estimates the number of memory accesses
to lookup a key in a data structure ψ containing n elements. For
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Figure 9. Example of insertion and removal. Inserting the tuple
t = �ns: 2, pid : 1, state:S, cpu: 5� into instance (a) produces
instance (b); conversely removing tuple t from (b) produces (a).
Differences between the instances are shown using dashed lines.

a binary tree we might set mbtree(n) = log2 n, whereas for a
linked list we might set mdlist(n) = n. Let Γ̂ be the environment
mapping each let-bound variable in d̂ to its definition. We compute
EΓ̂(q, v, d̂), where v is the decomposition root:

EΓ̂(qunit, v, C) = 1

EΓ̂(qscan(q), v1, C
ψ�−→ v2) = c(v1, v2)× EΓ̂(q, v2, Γ̂(v2))

EΓ̂(qlookup(q), v1, C
ψ�−→ v2) =

mψ(c(v1, v2))× EΓ̂(q, v2, Γ̂(v2))

EΓ̂(qjoin(q1, q2, ), v, p̂1 �� p̂2) = EΓ̂(q1, v, p̂1) + EΓ̂(q2, v, p̂2)

EΓ̂(qlr(q, left), v, p̂1 �� p̂2) = EΓ̂(q, v, p̂1)

EΓ̂(qlr(q, right), v, p̂1 �� p̂2) = EΓ̂(q, v, p̂2)

The cost estimate for joins is optimistic since it assumes that
queries on each side of the join need only be performed once each,
whereas in general one side of a join is executed once for each
tuple yielded by the other side. We could extend the heuristic to
estimate how many tuples are returned by a query, however this has
not proved necessary so far.

4.4 Mutation: Empty and Insert Operations

Next we turn our attention to compiling the empty and insert
operations. The empty operation is implemented using a function
dempty d̂ which creates an empty instance of a decomposition d̂.
The insert operation is implemented by a function dinsert d̂ t d,
which inserts a tuple t into a decomposition instance d.

To create an empty instance of a decomposition, the dempty
operation simply creates a single instance of the root node of
the decomposition graph; since the relation does not contain any
tuples, we do not need to create instances of any map edges. The
adequacy conditions for decompositions ensure that the root node
does not contain any unit decompositions, so it is always possible
to represent the empty relation.

To insert a tuple t into an instance d of a decomposition d̂, for
each node v:B�C in the decomposition we need to find or create an
instance vs where s = πB t in the decomposition instance. For each
edge in the decomposition we also need to find or create an instance
of the edge connecting the corresponding pair of node instances.

We perform insertion over the nodes of a decomposition in
topologically-sorted order. For each node v we locate the existing
node instance vs corresponding to tuple t, if any. If no such vs
exists, we create one, inserting vs into any data structures that link
it to its ancestors. For example, suppose we want to insert the tuple

t = �ns: 2, pid : 1, state:S, cpu: 5�

(a)
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Figure 10. Two cuts of a decomposition: (a) the cut for columns
{ns, pid}, and (b) the cut for columns {state}.

into the decomposition instance shown in Figure 9(a). We need
to find or create the node instances x��, y�ns: 2�, z�state:S�, and
w�ns: 2,pid: 1,state:S,cpu: 5�. We consider each in topologically-
sorted order. Node x�� is the root of the decomposition instance, so
we know its location already. Next we lookup the tuple �ns: 2� in
the instance of the map from x to y associated with x��; no such
tuple exists so we create a new node y�ns: 2� and insert it into the
map. Similarly we look up the tuple �state:S� in the instance of
the map from x to z associated with node x�� to discover the ex-
isting node instance z�state:S�. Finally, we have a choice; we can
either look up tuple �pid : 1� in the map from y to w or look up
the tuple �ns: 2, pid : 1� in the map from z to w; in either case we
find that no such tuple exists, hence we must create a new instance
of vertex w and insert it into both maps. If tuple t was a duplicate
of a tuple already present in the relation then vertex w would have
already been present and we would not need to do any further work.

4.5 Mutation: Removal and Update Operations

We next consider the remove and update operations. We imple-
ment remove using a function dremove d̂ s d, which removes tu-
ples matching tuple s from an instance d of decomposition d̂. The
operation works by removing any nodes and edges from d that form
part of the representation of tuples that only match s.

To implement removal and update we need the notion of a
cut of a decomposition. Given a tuple t with domain C, a cut of
a decomposition d̂ is a partition (X,Y ) of the nodes of d̂ into
nodes yA ∈ Y that can only be part of the representation of tuples
matching t, that is, ∆ �fd A → C, and nodes xB ∈ X that may
form part of the representation of tuples that do not match t, that is
∆ �fd B � C. Figure 10 shows two possible cuts of the scheduler
decomposition for different sets of columns C.

Edges in a decomposition cut (X,Y ) may point from X to Y
but not vice-versa. This result follows from the adequacy judgment,
which ensures that the columns bound in the child of a map edge
must functionally determine the columns bound in its parent. The
adequacy judgement also guarantees that the cut for a particular
decomposition d̂ and set of columns C always exists and is unique.

To remove tuples matching a tuple t using a cut (X,Y ), we
simply break any edges crossing the cut. That is, we remove any
references from data structures linking instances of nodes in X to
instances of nodes in Y that form part of the representation of tuples
that match t. Once all such references are removed, the instances
of nodes in Y are unreachable from the root of the decomposition
instance and can be deallocated. We can also clean up any map
nodes in X that are now devoid of children.

For example, suppose we want to remove all tuples matching the
tuple t = �ns: 2, pid : 1� from the decomposition instance shown in
Figure 9(b). Tuple t has the domain C = {ns, pid}; Figure 10(a)
shows the corresponding decomposition cut. Nodes x, y, and z lie
above the cut; an instance of node x is always present in every
possible relation, instances of node y are specific to a particular
namespace but not to any particular process id, and instances of

44



node z are specific to a particular process state but not to any
particular process. Node w lies below the cut; each instance of
node w forms part of exactly one valuation for the columns C.
To perform removal, we break any instances of the edges from
instances of nodes y and z to instances of node w which match
tuple t; these edges are drawn as dashed lines in Figure 9(b). Once
the dashed edges/nodes in Figure 9 are removed, we have the option
to deallocate the map at node y2 as well. Our implementation
deallocates empty maps to minimize space consumption.

To find the edge instances to break we can reuse the query
planner. Any query that takes columns C as input and visits each
of the edges we want to cut will work. One such plan is

qjoin
�
qlookup(qlookup(qunit)), qlookup(qlookup(qunit)), left

�
.

For some data structures, such as intrusive doubly-linked lists, we
can remove edges given the destination node alone. If the edge from
z to w uses such a data structure we could use the cheaper plan:

qlr
�
qlookup(qlookup(qunit)), left

�
.

We implement update using a function dupdate d̂ s u d, which
updates tuples matching s using values from u in an instance d
of decomposition d̂. Semantically, updates are a removal followed
by an insertion. In the implementation we can reuse the nodes and
edges discarded in the removal in the subsequent insertion—i.e.,
we can perform the update in place.

We provide only the common case for updates of tuples t match-
ing a tuple pattern s, namely when s is a key for the relation and
u does not alter columns appearing in s. Non-key patterns or key-
modifying tuple updates may merge multiple tuples, and hence re-
quire the implementation to merge nodes. Our restriction guaran-
tees no merging can occur. We can reuse nodes and edges below
the cut, and any changes in u that apply to nodes below the cut can
be performed in-place.

4.6 Soundness of Relational Operations

Next we show that the operations on decompositions faithfully
implement the corresponding relational specifications. We show
that sequences of relational operations on graph decompositions
are sound with respect to their logical counterparts (Theorem 5) by
induction using initialization and preservation lemmas.

Lemma 3 (Decomposition Initialization). For any decomposition
d̂, if d = dempty d̂ then ·, d |= ·, d̂ and α(d, ·) = ∅.

Lemma 4 (Decomposition Preservation). For all d̂, ∆, t, d, C,
and r where decomposition d̂ is adequate (·; ∅ �a,∆ d̂;C), decom-
position instance d is well-formed (·, d |= ·, d̂), and d represents
relation r (α(d, ·) = r) satisfying FDs ∆ (∆ |=fd r), we have:

(a) If dom t = C, d� = dinsert d̂ t d, and ∆ |=fd r ∪ {t} then
·, d� |= ·, d̂ and α(d�, ·) = r ∪ {t}.

(b) If dom t ⊆ C and d� = dremove d̂ s d then ·, d� |= ·, d̂ and
α(d�, ·) = r� where r� = r \ {t ∈ r | t ⊇ s} and r� |=fd ∆.

(c) Suppose s is a key for r (∆ �fd dom s → domC), the domains
of s and u do not intersect (dom s ∩ domu = ∅), and we have
d� = dupdate d̂ s u d and r� = {if t ⊇ s then t�u else t | t ∈
r}. If r� |=fd ∆ then ·, d� |= ·, d̂ and α(d�, ·) = r�.

Theorem 5 (Decomposition Soundness). Let C be a set of columns,
∆ a set of FDs, and d̂ a decomposition adequate for C and ∆. Sup-
pose a sequence of insert, update and remove operators starting
from the empty relation produce a relation r, and that each oper-
ation satisfies the conditions of Lemma 4. Then the correspond-
ing sequence of dinsert, dupdate, and dremove operators given
dempty d̂ as input produce d such that ·, d |= ·, d̂ and α(d, ·) = r.

5. Autotuner

Thus far we have concentrated on the problem of compiling rela-
tional operations for a particular decomposition of a relation. How-
ever, a programmer may not know, or may not want to invest time
in finding the best possible decomposition for a relation. We have
therefore constructed an autotuner that, given a program written to
the relational interface, attempts to infer the best possible decom-
position for that program.

The autotuner takes as input a benchmark program that pro-
duces as output a cost value (e.g., execution time), together with
the name of a relation to optimize. The autotuner then exhaustively
constructs all decompositions for that relation up to a given bound
on the number of edges, recompiles and runs the benchmark pro-
gram for each decomposition, and returns a list of decompositions
sorted by increasing cost. We do not make any assumptions about
the cost metric—any value of interest such as execution time or
memory consumption may be used.

6. Experiments

We have implemented a compiler, named RELC, that takes as input
a relational specification and a decomposition, and emits C++ code
implementing the relation. We evaluate our compiler using micro-
benchmarks and three real-world systems. The micro-benchmarks
(Section 6.1) show that different decompositions have dramatically
different performance characteristics. Since our compiler generates
C++ code, it is easy to incorporate synthesized data representations
into existing systems. We apply synthesis to three existing systems
(Section 6.2), namely a web server, a network flow accounting dae-
mon, and a map viewer, and show that synthesis leads to code that
is simultaneously simpler, correct by construction, and comparable
in performance to the code it replaces.

We chose C++ because it allows low-level control over memory-
layout, has a powerful template system, and has widely-used li-
braries of data structures from which we can draw. Data structure
primitives are implemented as C++ template classes that implement
a common associative container API. The set of data structures can
easily be extended by writing additional templates and providing
the compiler some basic information about the data structure’s ca-
pabilities. We have implemented a library of data structures that
wrap code from the C++ Standard Template Library and the Boost
Library [4], namely both non-intrusive and intrusive doubly-linked
lists (std::list, boost::intrusive::list), non-intrusive and
intrusive binary trees (std::map, boost::intrusive::set), hash-
tables (boost::unordered map), and vectors (std::vector).
Since the C++ compiler expands templates, the time and space
overheads introduced by the wrappers is minimal.

6.1 Microbenchmarks

We implemented a selection of small benchmarks: a benchmark
based on our running example of a process scheduler, a cache
benchmark based on the real systems discussed in the next section,
and a graph benchmark. For space reasons, we focus just on the
graph benchmark.

The graph benchmark reads in a directed weighted graph
from a text file and measures the times to construct the edge re-
lation, to perform forwards and backwards depth-first searches
over the whole graph, and to remove each edge one-by-one.
We represent the edges of a directed graph as a relation edges
with columns {src, dst ,weight} and a functional dependency
src, dst → weight . We represent the set of the graph nodes as a re-
lation nodes consisting of a single id column. The RELC compiler
emits a C++ module that implements classes nodes::relation
and edges::relation with methods corresponding to each rela-
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Figure 11. Elapsed times for directed graph benchmarks for de-
compositions up to size 4 with identical input. For each decom-
position we show the times to traverse the graph forwards (F), to
traverse both forwards and backwards (F+B), and to traverse for-
wards, backwards and delete each edge (F+B+D). We elide 68 de-
compositions which did not finish a benchmark within 8 seconds.

tional operation. A typical client of the relational interface is the
algorithm to perform a depth-first search:

edges::relation graph_edges;
nodes::relation visited;

// Code to populate graph_edges elided.

stack<int> stk;
stk.push(v0);
while (!stk.empty()) {

int v = stk.top();
stk.pop();
if (!visited.query(nodes::tuple_id(v))) {

visited.insert(nodes::tuple_id(v));
edges::query_iterator_src__dst_weight it;
graph_edges.query(edges::tuple_src(v), it);
while (!it.finished()) {
stk.push(it.output.f_dst());
it.next();

}
}

}

The code makes use of the standard STL stack class in addition
to an instance of the nodes relation visited and an instance of the
edges relation graph edges.

To demonstrate the tradeoffs involved in the choice of decompo-
sition, we used the autotuner framework to evaluate three variants
of the graph benchmark under different decompositions. We used a
single input graph representing the road network of the northwest-
ern USA, containing 1207945 nodes and 2840208 edges. We used
three variants of the graph benchmark: a forward depth-first search
(DFS); a forward DFS and a backward DFS; and finally a forward
DFS, a backward DFS, and deletion of all edges one at a time. We
measured the elapsed time for each benchmark variant for the 84
decompositions that contain at most 4 map edges (as generated by
the autotuner).

Timing results for decompositions that completed within an 8
second time limit are shown in Figure 11. Decompositions that
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Figure 12. Decompositions 1, 5 and 9 from Figure 11. Solid edges
represent instances of boost::intrusive::map, dotted edges rep-
resent instances of boost::intrusive::list.

are isomorphic up to the choice of data structures for the map
edges are counted as a single decomposition; only the best timing
result is shown for each set of isomorphic decompositions. There
are 68 decompositions not shown that did not complete any of the
benchmarks within the time limit. Since the autotuner exhaustively
enumerates all possible decompositions, naturally only a few of the
resulting decompositions are suitable for the access patterns of this
particular benchmark; for example, a decomposition that indexes
edges by their weights performs poorly.

Figure 12 shows three representative decompositions from those
shown in Figure 11 with different performance characteristics. De-
composition 1 is the most efficient for forward traversal, however
it performs terribly for backward traversal since it takes quadratic
time to compute predecessors. Decompositions 5 and 9 are slightly
less efficient for forward traversal, but are also efficient for back-
ward traversal, differing only in the sharing of objects between the
two halves of the decomposition. The node sharing in decomposi-
tion 5 is advantageous for all benchmarks since it requires fewer
memory allocations and allows more efficient implementations of
insertion and removal; in particular because the lists are intrusive
the compiler can find node w using either path and remove it from
both paths without requiring any additional lookups.

6.2 Data Representation Synthesis in Existing Systems

To demonstrate the practicality of our approach, we took three
existing open-source systems—thttpd, Ipcap, and ZTopo—and re-
placed core data structures with relations synthesized by RELC. All
are publicly-available programs with real-world users.

The thttpd web server is a small and efficient web server imple-
mented in C. We reimplemented the module of thttpd that caches
the results of the mmap() system call. When thttpd receives a re-
quest for a file, it checks the cache to see whether the same file
has previously been mapped into memory. If a cache entry exists,
it reuses the existing mapping; otherwise it creates a new mapping.
If the cache is full then the code traverses through the mappings re-
moving those older than a certain threshold. Other researchers have
used thttpd’s cache module as a program analysis target [21].

The IpCap daemon is a TCP/IP network flow accounting system
implemented in C. IpCap runs on a network gateway, and counts
the number of bytes incoming and outgoing from hosts on the local
network, producing a list of network flows for accounting purposes.
For each network packet, the daemon looks up the flow in a table,
and either creates a new entry or increments the byte counts for an
existing entry. The daemon periodically iterates over the collection
of flows and outputs the accumulated flow statistics to a log file;
flows that have been written to disk are removed from memory.
We replaced the core packet statistics data structures with relations
implemented using RELC.

ZTopo is a topographic map viewer implemented in C++. A
map consists of millions of small image tiles, retrieved using HTTP
over the internet and reassembled into a seamless image. To mini-
mize network traffic, the viewer maintains memory and disk caches
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Original Synthesis

System Everything Module Decomposition Module

thttpd 7050 402 42 239
Ipcap 2138 899 55 794
ZTopo 5113 1083 39 1048

Table 1. Non-comment lines of code for existing system experi-
ments. For each system, we report the size of entire original system
and just the source module we altered, together with the size of the
altered source module and the mapping file when using synthesis.

of recently viewed map tiles. When retrieving a tile, ZTopo first at-
tempts to locate it in memory, then on disk, and as a last resort over
the network. The tile cache was originally implemented as a hash
table, together with a series of linked lists of tiles for each state
to enable cache eviction. We replaced the tile cache data structure
with a relation implemented using RELC.

Table 1 shows non-comment lines of code for each test-case. In
each case the synthesized code is comparable to or shorter than the
original code in size. Both the thttpd and ipcap benchmarks orig-
inally used open-coded C data structures, accounting for a large
fraction of the decrease in line count. ZTopo originally used C++
STL and Boost data structures, so the synthesized abstraction does
not greatly alter the line count. The ZTopo benchmark originally
contained a series of fairly subtle dynamic assertions that verified
that the two different representations of a tile’s state were in agree-
ment; in the synthesized version the compiler automatically guar-
antees these invariants, so the assertions were removed.

For each system, the relational and non-relational versions had
equivalent performance. If the choice of data representation is good
enough, data structure manipulations are not the limiting factor for
these particular systems. The assumption that the implementations
are good enough is important, however; the auto-tuner considered
plausible data representations that would have resulted in signifi-
cant slow-downs, but found alternatives where the data manipula-
tion was no longer the bottleneck. For example we used the auto-
tuner on the Ipcap benchmark to generate all decompositions up
to size 4; Figure 13 shows the elapsed time for each decomposi-
tion on an identical random distribution of input packets. The best
decomposition is a binary-tree mapping local hosts to hash-tables
of foreign hosts, which performs approximately 5× faster than the
decomposition ranked 18th, in which the data structures are identi-
cal but local and foreign hosts are transposed. For this input distri-
bution the best decomposition performs identically to the original
hand-coded implementation to within the margin of measurement
error.

Our experiments show that different choices of decomposition
lead to significant changes in performance (Section 6.1), and that
the best performance is comparable to existing hand-written im-
plementations (Section 6.2). The resulting code is concise (Sec-
tions 6.1 and 6.2), and the soundness of the compiler (Theorem 5)
guarantees that the resulting data structures are correct by construc-
tion.

7. Discussion and Related Work

We build on our previous work [12], which introduced the idea of
synthesizing shared low-level data structures from a high-level re-
lational description. We decompose relations directly using graphs,
rather than first decomposing relations into trees that are then fused
into graphs. As a consequence our theoretical framework is much
simpler. We describe a complete query planning implementation,
and we show how to reuse the query planning infrastructure to per-
form efficient destructive updates using graph cuts. We present a
compiler that can synthesize efficient C++ implementations of rela-

0 5 10 15 20 25

Decompositions, Ranked by Time

0

2

4

6

8

10

12

14

E
la

p
se

d
 T

im
e 

(s
)

Figure 13. Elapsed time for IpCap to log 3× 105 random packets
for 26 decompositions up to size 4 generated by the auto-tuner,
ranked by elapsed time. The 58 decompositions not shown did not
complete within 30 seconds.

tional operations; previous work only described a proof-of-concept
simulator. We present an autotuner that automatically infers the best
decomposition for a relation. Finally, using three real examples we
show that synthesis leads to code that is simpler, guaranteed to be
correct, and comparable in performance to the code it replaces.

Relational Representations Many authors propose adding rela-
tions to both general- and special-purpose programming languages
(e.g., [3, 22, 23, 26, 30]). We focus on the orthogonal problem of
specifying and implementing the underlying representations for re-
lational data. Relational representations are well-known from the
database community; however, databases typically treat the rela-
tions as a black box. Many extensions of our system are possible,
motivated by the extensive database literature. Data models such as
E/R diagrams and UML rely heavily on relations. One application
of our technique is to close the gap between modeling languages
and implementations.

The autotuner framework has a similar goal to AutoAdmin [6].
AutoAdmin takes a set of tables, together with a distribution of
input queries, and identifies a set of indices that are predicted to
produce the best overall performance under the query optimizer’s
cost model. The details differ because our decomposition and query
languages are unlike those of a conventional database.

Synthesizing Data Representations The problem of automatic
data structure selection was explored in SETL [5, 24, 27] and has
also been pursued for Java collection implementations [28]. The
SETL representation sublanguage [9] maps abstract SETL set and
map objects to implementations, although the details are quite dif-
ferent from our work. Unlike SETL, we handle relations of arbi-
trary arity, using functional dependencies to enforce complex shar-
ing invariants. In SETL, set representations are dynamically em-
bedded into carrier sets under the control of the runtime system,
while by contrast our compiler synthesizes low-level representa-
tions for a specific decomposition with no runtime overhead.

Previous work has proposed using a programming model based
on relations which is implemented in the backend using container
data structures [8, 29]. A novel aspect of our approach is that our
relations can have specified restrictions (specifically, functional de-
pendencies) which enable a much wider range of possible imple-
mentations, including complex patterns of sharing. We also present
the first formal results, including the notion of adequate decompo-
sitions and a proof that operations on adequate decompositions are
sound with respect to their relational specifications. Unlike previ-
ous work, we propose a dynamic autotuner that can automatically
synthesize the best decomposition for a particular relation, and we
present our experience with a full implementation of these tech-
niques in practice.
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Synthesizing specialized data representations has previously
been considered in other domains. Ahmed et al. [1, 15] proposed
transforming dense matrix computations into implementations tai-
lored to specific sparse representations as a technique for handling
the proliferation of complicated sparse representations.

Synthesis Versus Verification Approaches A key advantage of
data representation synthesis over hand-written implementations
is the synthesized operations are correct by construction, subject
to the correctness of the compiler. We assume the existence of a
library of data structures; the data structures themselves can be
proved correct using existing techniques [31]. Our system provides
a modular way to assemble individually correct data structures into
a complete and correct representation of a program’s data.

The Hob system uses abstract sets of objects to specify and ver-
ify end-to-end properties of systems using multiple data structures
that share objects [17, 19]. Monotonic typestates enable aliased ob-
jects to monotonically change their typestates in the presence of
sharing without violating type safety [11]. Researchers have de-
veloped systems that have mechanically verified data structures
(for example, hash tables) that implement binary relational inter-
faces [7, 31, 32]. The relation implementation presented in this pa-
per is more general (it can implement relations of arbitrary arity)
and solves problems orthogonal to those addressed in previous re-
search.

Specifying And Inferring Shared Representations The decom-
position language provides a “functional” description of the heap
that separates the problem of modeling individual data structures
from the problem of modeling the heap as a whole. Unlike pre-
vious work, decompositions allow us to state and reason about
complex sharing invariants that are difficult to state and impossi-
ble to verify using previous techniques. Previous work investigated
modular reasoning about data structures shared between different
modules [13]. Graph types [14] extend tree-structured types with
extra pointers that are functionally determined by the structure of
the tree backbone, but cannot reason about overlapping structures.
Separation logic allows elegant specifications of disjoint data struc-
tures [25], and mechanisms have been added to separation logic
to express some types of sharing [2, 10]. Some static analysis al-
gorithms infer some sharing between data structures in low level
code [16, 18, 20, 21]; however verifying overlapping shared data
structures in general remains an open problem for such approaches.
The combination of relations and functional dependencies allows
us to reason about sharing that is beyond current static analysis
techniques.

8. Conclusion

We have presented a system for specifying and operating on data at
a high level as relations while correctly compiling those relations
into a composition of low-level data structures. Most unusual is our
ability to express, and prove correct, the use of complex sharing
in the low-level representation. We show using three real-world
systems that data representation synthesis leads to code that is
simpler, correct by construction, and comparable in performance
to existing hand-written code.
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