
CSE 415 - Operating Systems
Project #1 - Basic Time-Aware Shell

Spring 2012 - Prof. Butler1

Due date: April 24, 2012

In this assignment, you will implement a basic shell that restricts the runtime of processes executed from
within it. Your shell will read input from the users and execute it as a new process, but if that program runs
longer than it should, your shell will kill the process and report this to the user. To complete this task, you
may only use system calls and not any functions from the standard C library. This means that, for example,
printf(3), fgets(3), system(3), etc, are verboten for use.

1 Specification

At its core, a shell is a simple lop. Upon each iteration, it prompts the user for a command, attempts to
execute that command as a new process, waits for that process to finish, and re-prompts the user until EOF.
Your shell will do all of this with a slight twist.

The user of your shell has the option to specify a program timeout on the command line. If any process
runs for longer than the specified timeout, then your shell will kill the current running program and make
some snarky remark. If, however, the process ends before the specified timeout, a remark indicating the
shell’s frustration at being unable to kill the process will be displayed instead. Below we consider the
shredder shell in homage to the infamous nemesis of the Teenage Mutant Ninja Turtles, but feel free to
make a shell in tribute to your favorite evil henchman (e.g., fudd-sh (“I’m hunting wabbits”), claw-sh (“I’ll
get you next time, Gadget”), etc.). Particularly witty or humorous rejoinders may score bonus marks.

Let’s see shredder in action:

bash# ./shredder 10
shredder# /bin/cat
Bwahaha ... tonight I dine on turtle soup
shredder# /bin/pwd
/home/butler
Argg ... Bee-Bop, how could you let them get away?!?

Here, shredder was executed with the argument “10” and any program that runs longer than 10 seconds
will be killed. cat with no arguments will run indefinitely; thus, it was killed with glee. Conversely, pwd
returns quickly and was not killed, to the displeasure of shredder and his henchman.

1.1 read, fork, exec, wait, and repeat

As described above, a shell is just a loop performing the same procedure repeatedly. Essentially, that proce-
dure can be completed with these four system calls:

• read(2): read input from stdin into a buffer

• fork(2): create a new process that is an exact copy of the current running program

• execve(2): replace the current running program with another
1Many thanks to Adam Aviv, Perry Metzger, Sandy Clark, Micah Sherr, Stefan Miltchev, and Eric Cronin for the design and

refinement of this assignment.
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• wait(2): wait for a child process to finish before proceeding

Your program, in pseudocode, will most likely look like this:

whi le ( 1 ) {
r e a d ( cmd , . . . ) ;
p i d = f o r k ( ) ;
i f ( ! p i d ) {

execve ( cmd , . . . ) ;
} e l s e {

w a i t ( ) ;
}

}

While this may appear to be simple, there are many, many things that can go wrong. You should spend some
time reading the entire man page for all four of these system calls. As a reminder, read(2) means that it
is in section 2 of the manual, so to read its man page in a terminal, type:

bash# man 2 read

If you don’t specify “2” explicitly, you may get information for a different read command.

1.2 Timing and Signals

To time the current running program, you will use the alarm(2) system call, which tells the operating
system to deliver a SIGALRM signal after some specified time. If SIGALRM is unhandled, the shell will
exit. Signal handling is done by registering a signal handling function with the operating system. When the
signal is delivered, the current execution will be pre-empted and the signal handling function will execute.
This paradigm is demonstrated in the examples below.

In this following code, no signal handler is registered:

# i n c l u d e <s i g n a l . h>
# i n c l u d e <u n i s t d . h>

i n t main ( i n t argc , char ∗∗ a rgv ) {
a l a rm ( 1 ) ;
whi le ( 1 ) ;

}

When executed, the message Alarm Clock will be printed to stderr because the program exited due
to an unhandled alarm signal.

However, this program will exit cleanly because the SIGALRM is handled, resulting in a call to exit(2)2:

2What happens if there is no exit(2) call?
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# i n c l u d e <s i g n a l . h>
# i n c l u d e <u n i s t d . h>

void h a n d l e r ( i n t signum ) { e x i t ( 0 ) ; }
i n t main ( i n t argc , char ∗∗ a rgv ) {

s i g n a l (SIGALRM, h a n d l e r ) ;
a l a rm ( 1 ) ;
whi le ( 1 ) ;

}
By using the alarm(2) and signal(2) system calls, your shell can time the current running program.
Handling asynchronous signaling is far more nuanced than described here: you should spend some time
reading the entire man pages for these system calls and referencing online and printed resources (such as the
books suggested on the course web page) to gain a better understanding of signals and signal handling.

1.3 The kill-switch

To terminate a running process, you will use the kill(2) system call. Despite its morbid name, the
purpose of kill(2) is to deliver a signal to another process (not necessarily killing it). It will only kill
the process if it delivers the right kind of signal. There is one such signal that you will use to do just that,
SIGKILL. SIGKILL has the special property that it cannot be caught or ignored, so no matter the program
your shell just executed, it must heed the signal3.

1.4 Prompting and I/O

As previously stated, you must use only system calls, and nothing from the C standard library. This includes
input and output functions such as printf(3) and fgets(3). Instead, you will use the read(2) and
write(2) system calls. Your shell must prompt the user for input in a natural way, such as:

shredder#

Following the prompt, your program must read input from the user. You do not need to read input of arbitrary
length; instead, you can truncate input to 1024 bytes, but you must gracefully handle input longer than that.
Your shell should not crash in such situations.

1.5 Argument Restrictions

We do not require you to parse program arguments in your shell; that is, a user can provide any number of
arguments but you do not actually have to parse them. However, your shell must still execute the program
as intended. For example:

shredder# /bin/sleep 100
sleep: missing operand
Try ‘sleep --help’ for more information.

Even though the user provided the argument “100”, you are not required to pass this argument along to
execve. Due to this restriction, you may find it useful to write separate testing programs that exit after a
specified time (perhaps based on the SIGALRM example above).

3Extra credit: What other signal has this property? Which signals will terminate the program if left unhandled? Which man
page has this information? Answer these questions in the README file that you submit.
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Extra credit (5 pts): For extra credit, write a simple parser that will handle arbitrary arguments and pass
them to execve appropriately. Note that you cannot use any function from the C standard library. This
includes everything from string.h, so no use thinking about using strdup(3) or strtok(3) or
their variants.

1.6 Shell arguments

Despite the fact that there is no requirement to handle arguments within your shell, the shell program itself
(shredder) must take an optional argument, the execution timeout. If no argument is provided, then shredder
(or whatever you’re calling your shell) imposes no time restriction on executing processes.

You may be asking yourself, “Self, how am I going to convert a command line argument into an integer
if I’m not allowed to use anything from the C standard library?” For this purpose alone, you may make a
single call to atoi(3) or strtol(3) to convert command line input into an integer. You should check
for errors in this conversion, e.g., when a user provides a character instead of a number.

Extra credit (5 pts): For extra credit, implement your own version of atoi(3) that can handle arbitrary
numbers within the 32-bit width of an integer.

1.7 Adding Your Own System Call

Once you have all this functionality working, you’re going to get to exercise your creativity by adding your
own new system call to the kernel that your shell will be able to execute. You can following along in the
textbook (Problem 2.28) for how to do this, and you can implement the helloword system call that is sug-
gested there, or you can be more creative and make a more functional call. You can put the calling function
in the /bin directory along with programs such as cat and pwd, or leave it in your local directory, but show
your program executing the command, and include the portion of your /var/log/kernel/warnings
file that shows the system call being executed.

Ubuntu’s kernel compilation process is not as straightforward as others, so you will want to use the fol-
lowing instructions for how to compile a kernel inside your VM image, which is running Ubuntu 10.04 LTS:
http://linuxtweaking.blogspot.com/2010/05/how-to-compile-kernel-on-ubuntu-1004.
html

2 Acceptable Library Functions

In this assignment, you may only use the following system calls:

• execve(2)

• fork(2)

• wait(2)

• read(2)

• write(2)

• signal(2)

• alarm(2)
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• kill(2)

• exit(2)

You may also use the following non-system calls:

• malloc(3) or calloc(3)

• free(3)

• perror(3) for error reporting

• atoi(3) or strtol(3), but only once

Using any library function other than those specified above will adversely affect your mark on this assign-
ment. In particular, if you use the system(3) library function, you will receive a ZERO.

3 Error Handling

All system call functions that you use will report errors via the return value. As a general rule, if the return
value is less than zero, then an error has occurred and errno is set accordingly. You must check your
error conditions and report errors. To expedite the error checking process, we will allow you to use the
perror(3) library function. Although you are allowed to use perror, it does not mean that you should
report errors with voluminous verbosity. Report fully but concisely.

4 Memory Errors

You are required to check your code for memory errors. This is a non-trivial task, but a very important
one. Code that contains memory leaks and memory violations will have marks deducted. Fortunately, the
valgrind tool can help you clean these issues up. It can be installed inside your Linux VM (or native
distro, if that’s how you’re running it). Remember that valgrind, while quite useful, is only a tool and not
a solution. You must still find and fix any bugs that are located by valgrind, but there are no guarantees
that it will find every memory error in your code: especially those that rely on user input.

5 Developing Your Code

The best way to develop your code is in Linux running inside the virtual machine image provided to you.
This way, if you crash the system, it is straightforward to restart. This also gives you the benefit of taking
snapshots of system state right before you do something potentially risky or hazardous, so that if something
goes horribly awry you can easily roll back to a safe state. You may use the room 100 machines to run the
Linux VM image within a Virtualbox environment, or run natively or within a VM on your own personal
machine. Importantly, do not use ix for this assignment.

6 Submission Instructions

You must turn in the following:

1. A README file. The README will contain the following:
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• Your name

• A list of submitted source files

• Extra credit answers (if any)

• Compilation instructions

• Overview of work accomplished

• Description of code and code layout

• General comments and anything that can help us grade your code

• Number of hours spent on the project and level of effort required.

2. A Makefile. We should be able to compile your code by simply typing make. If you do not know
what a Makefile is or how to write one, ask Getty or Zhiyi or one of our course oracles for help
or consult one of the many online tutorials. Makefiles will be covered in the lab sessions for those of
you who are unfamiliar with them.

3. The source code for your system call and the corresponding portion of the log file that shows it
executing, as well as the code for the program that uses the system call.

4. Your code. This is not a joke: people have been known to forget to include it.

Put all of your project files into their subdirectory called hw1 and make sure that your Makefile has
a “make clean” command to clear out any object files and other unneeded intermediate files. Run “make
clean” on this subdirectory.

cd up a directory so that hw1 is a subdirectory of your working directory, and run the following com-
mand to create your submission tarball, but replacing ”UOEMAIL” with your cs.uoregon.edu email account
name.

tar cvzf hw1_submission_UOEMAIL.tar.gz hw1}

For example, since my UO CIS email account is ”butler”, I would run the command:

tar cvzf hw1_submission_butler.tar.gz hw1}

Use the turnin script, located at http://systems.cs.uoregon.edu/apps/turnin.cgi, to
submit your tarball.

7 Grading Guidelines

This programming project will be graded as follows:

• 10% Documentation

• 20% Proper use of system calls and general code design

• 70% Functionality and correct operation of your shell
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Note that general deductions may occur for a variety of programming errors including memory viola-
tions, lack of error checking, poor code organization, etc. Also, do not take the documentation lightly, as it
provides those evaluating your project with a general roadmap of your code; without good documentation,
it can be quite difficult to grade the implementation. Once again, these will be graded on machines running
the Ubuntu 10 Linux distribution. We will be using MOSS to find similarities between the submitted project
and those submitted by others in the class, as well as those from previous years, so please do not be tempted
to cheat.

The assignment is due at 11:59 PM Samoan Standard Time (what is special about this time zone?) on
April 24, 2012. You will have three grace days for late assignments for this class with the ability to use a
maximum of two on any given assignment. You must specify that you intend to use these in your README
file. If you exceed your allotment of grace days, points will be deducted at 25% per day.

8 Attribution

This is a large and complex assignment, using arcane and compactly documented APIs. We do not expect
you to be able to complete it without relying on some outside references. That said, we do expect that you
will be challenged with this assignment, and that you will learn about systems programming most effectively
by doing the work yourself. You can talk about the project and the concepts, but do not share code, not even
pseudocode.

In order to avoid issues of plagiarism and cheating in this project, you must attribute any outside sources
that you use. This includes both resources used to help you understand the concepts, and resources contain-
ing sample code that you may have borrowed as a template for your shell. The course textbook only needs
to be cited in this latter case; all other sources must be attributed. You should use external code sparingly.
For example, using most of an example from the man page for pipe(2) would be reasonable. Using a
function such as ParseInputandCreateJobandHandleSignals() from a Write Your Own Shell
in Four Easy Steps site would not be OK, either using text verbatim or closely following the structure for
your own shell design.
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