CSE 415 - Operating Systems
Project #3 - RAM Disk Filesystem
Spring 2012 - Prof. Butler!

Due date: June 8, 2012

In this project, you will implement filesystem functions on a RAM disk file system that is provided. The
ideas behind this project are discussed in the lecture on filesystem implementaion and are described in the
OSC book in Chapter 11. While this code is not based directly on any OS implementation, it does share the
common concepts from a UNIX file system. You will be allowed to work in groups of two for this project.

1 Specification
You are going to be required to implement four functions in the file system implementation:

o fileSeek(unsigned int fd, unsigned int offset): Set the offset in the per-process file structure
(fstat_t) for the file specified by the file descriptor £d. You will need to look up the file for
the file descriptor. Your implementation must be able to seek to any location in the file.

o fileRead(unsigned int fd, char *buf, unsigned int bytes): This function reads bytes bytes from the
current position of the file offset (e.g., set by £ileSeek above). Read must find the file blocks to
read and collect the data into the buffer. The function diskRead is provided to retrieve the bytes from
the block when the correct block is found. Your file read must be able to read the entire file or any
subset. Files may span multiple data blocks.

o diskWrite(fcb_t *fcb, unsigned int block, char *buf, ...): Writes the data from the buffer buf into
the RAM disk at the appropriate block for the file referenced by the file control block fcb. You need
the fcb to maintain the correct size of the file on the disk. The function diskRead is similar, so
please use that as a hint. This file only writes to one block at a time.

o fileWrite(unsigned int fd, char *buf, unsigned int bytes): This function writes bytes of data from
buffer buf into the file from the current position of the file offset (e.g., set by £i1leSeek above). Your
function diskWrite performs the actual writing to the RAM disk. This function and fileRead
share a number of similarities: both require finding the appropriate blocks (to write in this case) and
call the disk-level version to update the RAM disk. Your file write must be able to write to any location
in the file and beyond the current end of the file (i.e., can make the file larger). Files may span multiple
data blocks.

You need data to test £ileRead, so you may build a simplified version of fileWrite first (e.g.,
writes to only one block) before going to the full versions necessary.

The challenge in this project is to understand the concepts in the file system. The file system structures
are defined in the file cis415-filesys.h. Please study these structures — most map to the structures
discussed in Chapter 11. The full tarball for the project will be attached.

The other challenge is to understand the layout of these structures in blocks on the RAM disk. Figure 1
gives a diagram outlining the blocks in the on-disk file system.

The first block (block 0) is the file system (partition) control block. All the blocks have a bit of block
information at the beginning (dblock_t), but after that are the block contents. Block O specifies the number

"Many thanks to Dr. Trent Jaeger for the design of this assignment.

File System Block

Directory Block

First Dentry Block

File Control Block

File Data Block

dfilesys_t ddir_t block of ddentry_t fcb_t
dblock_t dblock_t dblock_t dblock_t dblock_t
. ddentry_t
bsize buckets name block _ next flags
firstfree freeblk ddentry_t size
root free ddentry_t attr_block
file data
ddentry_t
unused dentry hash table ddentry_t blocks (10)
block 0 block 1 block 2 block 3 block 4

Figure 1: Structure of the file system.

of blocks in the file system (bsize), the current first free block (first free), and the block number for
the root directory (only directory). There is only one file system block.

Block 1 is the block that stores the directory. A directory refers to its hash table of directory entries (i.e.,
dentry) by its number of buckets which fill the remainder of the block and the location of the next free
spot for a dentry (freeblk and free (slot)). Only the heads of the hash table are stored in the
hash table. Each dent ry has a next reference that is used to traverse the hash table lists. There are usually
multiple directory blocks, but in this project there is only one.

Block 2 is the first dentry block, and it contains a set of dentries which each refer to a specific file
by its name and (first) block. A next reference specifies the next entries to access for the dentry hash table.
There can be multiple of these.

Block 3 is the file control block (FCB) which refers to the file metadata and actual data blocks. There
are only 10 blocks in a file currently. There is one FCB per file.

Block 4 is a typical file data block. Other than the block header these blocks contain only file data. There
should be lots of these.

In the assignment, an output file shows the sequence of commands and responses for your filesystem.

You will run 5 commands to generate this output: ./cis415-p3 your_fs cmdi where cmdi is the
ith command for (e.g., cmd]1 for the first). This program is deterministic, so your output should match the
given output, modulo any bugs.
As a hint, you should make copies of the fs file as once you have created files within the RAM disk, any
subsequent creates will cause file errors, since they will already exist. This is not a problem for when you
are working on the file seek/write/read etc, but for the purposes of showing a clean run for your submitted
solution, you should show your answers against a new instance of the RAM filesystem.

2 Submission Instructions

You may develop your code on any machine with a C compiler, but we will be testing on Ubuntu. You
should probably use the VM that you have been working with throughout the course.
You must turn in the following:

1. A README file. The README will contain the following:

e Your name and your parter’s name if you work in a group of 2

e A list of submitted source files

e Compilation instructions
e Overview of work accomplished and what each group member worked on
e Description of code and code layout

e General comments and anything that can help us grade your code

Use the existing makefile. ed up a directory so that proj3 is a subdirectory of your working directory,
and run the following command to create your submission tarball, but replacing "UOEMAIL” with your
cs.uoregon.edu email account name.

tar cvzf proj3_submission_ UOEMAIL.tar.gz proj3

For example, since my UO CIS email account is "’butler”, I would run the command:

tar cvzf proj3_submission_butler.tar.gz proj3

Use the turnin script, located at http://systems.cs.uoregon.edu/apps/turnin.cgi, to
submit your tarball. If you work in a group of 2, only one submission needs to be made for the group. Make
sure both group members are identified in the README.

3 Grading Guidelines

This programming project will be graded as follows:

10% Documentation

10% Correct operation of £ileSeek

20% Correct operation of diskWrite

e 20% Correct operation of £ileRead

20% Correct operation of fileWrite

Note that general deductions may occur for a variety of programming errors including memory viola-
tions, lack of error checking, poor code organization, etc. Also, do not take the documentation lightly, as it
provides those evaluating your project with a general roadmap of your code; without good documentation,
it can be quite difficult to grade the implementation. Once again, these will be graded on machines running
the Ubuntu 10 Linux distribution.

4 Attribution

We expect that you will do this assignment yourself/in your group. In order to avoid issues of plagia-
rism and cheating in this project, you must attribute any outside sources that you use. This includes both
resources used to help you understand the concepts, and resources containing sample code that you may
have borrowed as a template for your shell. The course textbook only needs to be cited in this latter
case; all other sources must be attributed. You should use external code sparingly. For example, us-
ing most of an example from the man page for pipe (2) would be reasonable. Using a function such

as ParseInputandCreateJobandHandleSignals () from a Write Your Own Shell in Four Easy
Steps site would not be OK, either using text verbatim or closely following the structure for your own shell
design. If you have technical concept questions, you should consider sending email to the mailing list. You
should also email the admin list if you have questions.

