
Computer and Information Science

CIS 415:
Operating Systems

Introduction

Prof. Kevin Butler
Spring 2012

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Welcome
• CIS 415: Operating Systems

‣ Section 1: Tuesday/Thursday, 12:00-13:20, 30 Pacific

‣ Section 2:Tuesday/Thursday, 14:00-15:20, 200 Deschutes

• Ensure that you’re registered: this course & lab

• Instructor (me): Kevin Butler

‣ 343 Deschutes Hall

‣ Office Hours: Wednesday 10AM-12PM unless otherwise
specified and by appointment

‣ email: butler@cs.uoregon.edu

2

mailto:butler@cs.uoregon.edu
mailto:butler@cs.uoregon.edu

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

TAs and Labs
• TAs: Getty Ritter & Zhiyi Wu (Ryan Woo)

‣ gdritter@cs.uoregon.edu, zhiyiw@cs.uoregon.edu

‣ Office hours:

• Wed 2-3 PM (Getty)

• Mon 3-4 PM, Thurs. 3:30-4:30 PM (Ryan)

‣ Lab Sections: Klamath Labs

• will cover practical skills for class

‣ Tues. 3-4 PM (Getty overseeing)

‣ Thurs. 3-4 PM (Getty overseeing)

‣ Fri. 4-5 PM (Ryan overseeing)
3

mailto:kaveh@cs.uoregon.edu
mailto:kaveh@cs.uoregon.edu
mailto:zhiyiw@cs.uoregon.edu
mailto:zhiyiw@cs.uoregon.edu

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Resources

• Textbook

‣ Silberschatz, Galvin, and Gagne, Operating System Concepts, 8/e

‣ Recommended: UNIX/C programming books (on website)

• Web page:

‣ http://www.cs.uoregon.edu/classes/12S/cis415/

• Mailing list:

‣ cis415@cs.uoregon.edu (first mail by tommorow)

• Course Oracles: Joe Pletcher, Hannah Pruse

‣ pletcher@cs.uoregon.edu, hpruse@cs.uoregon.edu

4

http://www.cs.uoregon.edu/classes/11S/cis415/
http://www.cs.uoregon.edu/classes/11S/cis415/
http://www.cs.uoregon.edu/classes/11S/cis415/
http://www.cs.uoregon.edu/classes/11S/cis415/
mailto:cis415@cs.uoregon.edu
mailto:cis415@cs.uoregon.edu
mailto:pletcher@cs.uoregon.edu
mailto:pletcher@cs.uoregon.edu
mailto:hpruse@cs.uoregon.edu
mailto:hpruse@cs.uoregon.edu

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Course Structure
• Lectures (what you’re in now)

‣ focus on core OS content, also worksheets and quizzes (in-
class exercises)

• Lab Sections (Run by the TAs)

‣ programming assignment help, tutorials, practice, material on
C and UNIX, threads, signals, etc

• Grading

‣ 10% Assignments & Quizzes

‣ 20% Midterm (in-class, May 8)

‣ 50% Programming Projects (do not procrastinate)

‣ 30% Final (Section 1: 8:00 June 13; Section 2: 13:00 June 13)
5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

This course ...
• This course is a systems course

covering fundamental and applied
topics in computer operating
systems, including:

‣ system calls and interfaces, processes,
concurrent programming,
virtualization, resource scheduling and
management (CPU, memory, I/O),
virtual memory, deadlocks, distributed
synchronization, filesystems, storage,
security, other topics as time permits

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

You need to understand ...

• Computer organization and architecture (CIS 314)

• Data structures and algorithms (CIS 313)

• C and UNIX programming environments (you can
learn this as you go) (CIS 323, CIS 330)

• How to look things up from source material, online
documentation, books, and web sites

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Goals
‣ My goal: to provide you with the tools to understand

fundamentals of modern operating systems.

‣ Basic technologies

‣ Engineering/research trade-offs

‣ In-depth practical OS knowledge and systems
programming experience

• This is going to be a challenging course. The key to success
is sustained effort. Failure to keep up with readings and
assignments will likely result in poor grades, and
ultimately little understanding of the course material.

• Pay-off: fundamental knowledge, marketable skills

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Unsolicited Student Feedback
• “Thank you for the sea of knowledge you have delivered in this term.

Even though I may not have been stoked about the difficulty level of
the class while actually taking it, I appreciate that it was that way, and,
though I doubt everyone else feels this way, I don’t think you should
change much.”

• “Thanks for providing this project as an option. I enjoyed the larger
scale project, although it caught me off-guard. It was a good
opportunity to apply some of the knowledge from other classes that I
hadn't really used before. It expanded my knowledge of C (and
obviously UNIX). In regards to the class as a whole, I liked the volume
of content and the pace of the course. Thanks for the course”

• “Thank you for a very enriching class.”

• “I hope it will only take a couple of years for people to realize that
those who do well in your classes also do well at getting and keeping
interesting jobs.” (former student now in industry: same for grad school!)

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Course content: changes
• “I have been stunned by the misconceptions of some of our most

senior engineers with respect to concurrency, but the real stunner
has been the essentially complete lack of awareness of visibility
issues. Visibility wasn't covered in [previous years] but it is by far
our most prevalent concurrency bug (in Java). An understanding of
processor-local caching, the 'volatile' keyword in Java and the
"happens-before" relationship in the Java memory model is
something that I will be seeking in every future employment
candidate.” (Another former student now in industry)

‣ Above, “visibility” refers to synchronization relating to get/set

‣ We’re not going to be spending much time with Java, but concepts
will be applicable (understand OS issues == understand Java)

• Increase focus on distributed systems & distributed concurrency
(caching is already an important concept): important to ACM too

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Course Projects
• Best way to understand the material is by doing

• Programming in a Linux environment and
understanding systems issues

• First project will be solo, second team-based

• Building a shell in Linux, understanding how to
compile a kernel, etc.

• Option: if you do very well in the first assignment and
want to form a small group, you can work on an
independent research project

‣ mobile phones, embedded systems, Windows, Linux

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Course Calendar
• The course calendar as all the

relevant readings, assignments
and test dates

• The calendar page contains
electronic links to online
papers assigned for course
readings.

• Please check the website
frequently for announcements
and changes to the schedule.
Students are responsible for
any change on the schedule.

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

What’s an Operating System?

• Consider you want to do the following:

‣ print “this is not a printout” on the printer

‣ terminate

• Simple!

13

main()
{
printf(“this is not a printout\n”);

}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Without an OS
• Get printer manual

‣ figure out how to send
messages to it

• Write the program

‣ put the character string
“this is not a printout” in
a memory buffer

‣ do the stuff printer
requires to send buffer
to it

‣ go into endless loop

• wait for someone to turn
off computer eventually

14

• Get hold of a computer

‣ it has to be all yours

• Translate your program
into machine code

• Figure out how to get
program into memory

‣ font panel switches

‣ burn a ROM

‣ punch cards

‣ Somehow start program

‣ Turn off computer when done

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

With an OS

• Put program in file

‣ put character string “this is not a printout” in a memory
buffer

‣ Issue system call to send buffer to printer

• Compile the program and tell OS to run the program
file

• That’s everything!

• What’s a system call?

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

An Operating System

• Program that acts as intermediary between a
computer user and the computer hardware

‣ i.e., an abstract interface to programs

• Goals as a resource manager:

‣ Execute user programs and making solving user problems
easier

‣ Make the computer system convenient and safe to user

‣ Use the computer hardware in an efficient manner

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Things your OS does
• Processes

‣ hides programs from one another

• Traffic cop

‣ resource management	

‣ who gets to run, when?

• Memory management

‣ protection from other programs’
mistakes

• Security

‣ protection from other programs’
malice 	

17

• System call interface

‣ abstract, simplified interface to
services

‣ like a function library but
communicates with the OS

• Portability

‣ programs don’t have to take into
account details of their environment

• Device management

• Communication

‣ between processes

‣ to devices & networks

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Related to an OS

• GUIs and user interfaces

• Applications (e.g., web browser)

• Compilers

• Libraries

• These are implemented as user-space programs but
not really the core of the OS

‣ Linux

‣ GNU/Linux

‣ Ubuntu vs Debian vs Fedora vs...

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Where does an OS fit?

hardware

operating system
HW/SW interface

(x86 + devices)

CPU memory storage network
GPU clock audio radioperipherals

OS / app interface
(system calls)

C standard library
(glibc)

C application

C++ STL / boost /
standard library

C++ application

JRE

Java
application

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating System History

• 1950s: Simplify operators’ job

• 1960s: Structure, concepts, everything

• 1970s: Small and flexible (UNIX)

• 1980s: Individual user systems (PCs)

• 1990s: Internet, Windows

• 2000s: Security

• 2010s: Embedded, Highly distributed

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (1950s)

• Primitive systems

‣ Little memory, programs stored on tape

• Single user

‣ Batch processing

‣ Computer executes one
function at a time

• No overlap of I/O and
computation

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (1960s)

• Multiprogramming

‣ Timesharing

‣ Multiple programs run concurrently

• Many operating systems concepts
invented

‣ Virtual memory, Hierarchical File Systems,
Synchronization, Security and many more

• End up with slow, complex systems
on limited hardware (Multics)

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (1970s)

• Becoming more available

‣ UNIX

• First OS written in a high-level language

• Becoming more flexible

‣ Extensible system

‣ Community forms beyond developers

• Performance focus

‣ Optimization of algorithms from 1960s

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (1980s)

• Critical Mass Reached

‣ A variety of well-known systems, concepts

‣ UNIX fragments

• PC Emerges

‣ Simple, single user, no network

‣ Simple OSes: DOS

• Graphical User Interfaces

‣ X Windows and Apple Macintosh

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (1990s)
• Connect to Internet

‣ “Real OSes” for PCs

• NT/2000+, Linux, eventually
Mac OS X

• Server Systems Galore

‣ Mainframes even re-emerge

• Complex Systems and
Requirements

‣ Parallel, Real-time,
Distributed, etc.

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (2000s)

• Challenges facing us now include

‣ Security

‣ Multicore

‣ Ubiquitous

‣ Virtual Machines

‣ Embedded

‣ Mobile

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating Systems (2010s)
• Where are things heading?

‣ cloud computing

‣ ubiquitous mobile devices

• ARM Cortex A8 = 2000 MIPS
@ 1 GHz

• Intel Penium 3 = 2,054 MIPS
@ 600 MHz

‣ what operating systems are
running in cloud and mobile
systems?

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

OS Functions

• What does it
do?

‣ Mostly behind
the scenes…

• Example

‣ Page Fault
Handling

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Page Fault Handling
• Cause: Access a virtual memory location not backed

by a physical page

• Trap generated by hardware

• Handler in OS determines how to obtain memory

• If page is still on disk, then handler

‣ allocates physical page

‣ makes I/O request to disk via file system and driver

• Driver copies page from disk into new
physical page

• OS restarts the process at the trapped instruction
29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Page Fault Handling

• There are multiple processes, so the OS has to make
trade-offs

‣ What is there are no physical pages available?

‣ The disk is slower than memory access, so how to process?

‣ There may be multiple outstanding disk requests, so what
order should they be processed?

‣ How does the OS interact with hardware effectively?

‣ Many others…

30

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Learning About OSes

• OS has many protocols like page fault handling

‣ You will need to know them

• OS designers add layers of indirection concepts to
simplify programming (e.g., virtual memory)

‣ You will need to understand these concepts

• The design of protocols using these concepts involves
trade-offs (e.g., optimize disk read performance)

‣ You will need to understand why OS protocols are written
the way that they are

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Some Basics

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Storage Hierarchy

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device Input/Ouput

CPU
Device

Memory: Data
and Instructions

I/O Request

Data

Data

Data: DMA

Interrupt

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling

• Determine which task to perform given that there
are:

‣ Multiple user processes

‣ Multiple hardware components

• Provide effective performance

‣ Responsive to users, CPU utilization

• Provide fairness

‣ Do not starve low priority processes

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Security

• Control access to shared resources

‣ E.g., Files

• Ensure that only authorized processes can access a
file

‣ User’s process can access user’s files

‣ Most file systems enable sharing among users

‣ Some operating systems represent devices as files

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Assignment 0 (due Thurs)

• Complete the following survey:

‣ http://www.surveymonkey.com/s/F5S8VF8

• Download the following virtual machine image:

‣ http://www.cs.uoregon.edu/Classes/12S/cis415/Ubuntu10-
cis415.vmdk

‣ Only download on campus (it’s about 3 GB)

‣ Preferred: keep the image on a portable hard drive

‣ username: cis415 password: 415s12

• Set up a subversion or git repository in home dir.

37

http://www.surveymonkey.com/s/F5S8VF8
http://www.surveymonkey.com/s/F5S8VF8
http://www.cs.uoregon.edu/Classes/12S/cis415/Ubuntu10-cis415.vmdk
http://www.cs.uoregon.edu/Classes/12S/cis415/Ubuntu10-cis415.vmdk
http://www.cs.uoregon.edu/Classes/12S/cis415/Ubuntu10-cis415.vmdk
http://www.cs.uoregon.edu/Classes/12S/cis415/Ubuntu10-cis415.vmdk

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Next Time

• Next class

‣ Background on Computer Systems

38

