
Computer and Information Science

CIS 415:
Operating Systems

OS Structure

Prof. Kevin Butler
Spring 2011

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Survey Results

2

0

10

20

30

40

C C++ Both Neither

Java

JavaScript

Python

PHP

ML

Ruby

C#

x86

Haskell

0 12.5 25 37.5 50

Languages used

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Survey Results

3

0

7.25

14.5

21.75

29

Yes No

(*(x+5))[5] = &y

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Survey Results

4

unsigned char *mystery_function(unsigned short bufsize) {
unsigned char *tmp_buf;

if (bufsize == 0)
return NULL;

tmp_buf = malloc(bufsize);
if (tmp_buf == NULL)
return NULL;

if (verify_something() == 0) /* something bad happened */
return NULL;

return tmp_buf;
} free(tmp_buf);

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Canonical System Hardware
• CPU: Processor to perform computations

• Memory: Programs and data

• I/O Devices: Disk, monitor, printer, …

• System Bus: Communication channel
between the above

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU
• CPU
‣ Semiconductor device, digital logic (combinational and sequential)
‣ Can be viewed as a combination of many circuits

• Clock
‣ Synchronizes constituent circuits

• Registers
‣ CPU’s scratchpads; very fast; loads/stores
‣ Most CPUs designed so that a register can store a memory address

• n-bit architecture

• Cache
‣ Fast memory close to CPU
‣ Faster than main memory, more expensive
‣ Not seen by the OS

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Instruction Execution

• Arithmetic Logic Unit (ALU)

• Program counter

‣ Instruction address

• Instruction from the control unit (F)

• CPU data registers

‣ Input A and B and Output R

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory/RAM
• Semiconductor device

‣ DIMMs mounted on PCBs

‣ Random access: RAM

‣ DRAM: Volatile, need to refresh

• Capacitors lose contents within few tens of msecs

• CPU accesses RAM to fill registers

• OS sees and manages memory

‣ Programs/data need to be brought to RAM

• Memory controller: Chip that implements the logic for
• Reading/Writing to RAM (Mux/Demux)

• Refreshing DRAM contents

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory Access

• Instructions

‣ Program counter is used to fetch into control unit

‣ Fetched into instruction register

• Data

‣ Load/store instructions

‣ Move data between memory locations

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

I/O Devices

• Large variety, varying speeds

‣ Disk, tape, monitor, mouse, keyboard, NIC

‣ Serial vs parallel

• Each has a controller

‣ Hides low-level details from OS

‣ Manages data flow between device and CPU/memory

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Hard Disk

• Secondary storage

• Mechanically operated

‣ Sequential access

• Cheap => Abundant

• Very slow

‣ Orders of magnitude

• Increasingly common: SSD

‣ where in storage hierarchy?

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interconnects
• A bus is an interconnect for flow of data and information

‣ Wires, protocol

‣ Data arbitration

• System Bus

• PCI Bus

‣ Connects CPU-memory subsystem to

• Fast devices

• Expansion bus that connects slow devices

• SCSI, IDE, USB, …

‣ Will return to these later

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Services & Hardware Support

• Protection: Kernel/User mode, Protected Instructions,
Base & Limit Registers

• Scheduling: Timer

• System Calls: Trap Instructions

• Efficient I/O: Interrupts, Memory-mapping

• Synchronization: Atomic Instructions

• Virtual Memory: Translation Lookaside Buffer (TLB)

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Kernel/User Mode
• A modern CPU has at least two modes

‣ Indicated by status bit in protected CPU register

‣ OS kernel runs in privileged mode

• Also called kernel or supervisor mode

‣ Applications run in normal mode

• OS can switch the processor to user mode

‣ CPU can only access own address space, can’t talk to devices

• Events that need the OS to run switch the processor to
privileged mode

‣ E.g., division by zero

• OS definition: Software that runs in privileged mode
14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Protected Instructions

• Instructions that require privilege

‣ Direct access to I/O

‣ Modify page table pointers, TLB

‣ Enable & disable interrupts

‣ Halt the machine, etc.

• Access sensitive registers or perform sensitive
operations

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Base and Limit Registers

Hardware support to protect
memory regions

Loaded by OS before starting
program

CPU checks each reference
Instruction & data addresses
Ensures reference in range

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interrupts
• Polling = “are we there yet?” “no!” (repeat…)

‣ Inefficient use of resources

‣ Annoys the CPU

• Interrupt = silence, then: “we’re there”

‣ I/O device has own processor

‣ When finished, device sends interrupt on bus

‣ CPU “handles” interrupt

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interrupts

• Asynchronous signal indicating need for attention

‣ Replaces polling for events

• Represent

‣ Normal events to be noticed and acted upon

• Device notification

• Software system call

‣ Abnormal conditions to be corrected

‣ Abnormal conditions that cannot be corrected

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Hardware Interrupts

• Signal from a device

‣ Implemented by a controller (e.g., memory)

• Examples

‣ Timer

‣ Keyboard, mouse

‣ End of DMA transfer

• Response to processor request

• Unsolicited response

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Timer

• OS needs timers for

‣ Time of day

‣ CPU scheduling

• Interrupt vector for timer

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Software Interrupts

• Software interrupts (Traps)

‣ Special interrupt instructions

• int 0x80 -- System call

‣ Exceptions

• Some can be fixed (e.g., page fault)

• Some cannot (e.g., divide by zero)

• All invoke OS, just like a hardware interrupt

‣ trap starts running OS code in supervisor access space,
can’t be overwritten by the user program

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

How a process runs (high level)

• OS keeps track of which process is assigned to which
sections in memory along with other details

• For a new process to run, memory is assigned by the
OS, which puts the code in that location

‣ switch to user mode and start running at first address of
the program

• OS keeps record of every process

‣ assigned memory, current program counter, etc.

‣ This is the process context

‣ Enough info to restart process where it left off

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Dealing with interrupts

• Eventually a hardware interrupt or a trap will happen

‣ e.g., received input from keyboard, clock ticked, etc

• OS records state of running process’s context

‣ stored in a process control block (PCB)

• Next, OS services the interrupt

‣ e.g., send something to the printer

• Finally, pick process to restart

‣ maybe the one that was running, maybe not (scheduling!)

‣ moves back into user mode

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interrupt Handling (details)

• Each interrupt has a corresponding Interrupt Handler

• When an interrupt request (IRQ) is received

‣ If interrupt mask allows interrupt

‣ Save state of current processing

• At time of interrupt something else may be running

• State: Registers (stack ptr), program counter, etc.

‣ Execute handler

‣ Return to current processing

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interrupt Handling

25

Interrupt

System
service call

HW exception
SW exception

Virtual addr.
exception

Trap Handlers

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multiple Interrupts

26

Executing in
user mode

Make system call

Disk Interrupt

Clock Interrupt

Kernel context layer 1
Execute syscall, save user registers

Kernel context layer 2
Execute disk handler

Save register context of syscall

Kernel context layer 3
Execute disk handler

Save register context of disk

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device Access

• Port I/O

‣ Uses special I/O instructions

‣ Port number, device address

• Separate from process address space

• Memory-mapped I/O

‣ Uses memory instructions (load/store)

• To access memory-mapped device registers

‣ Does not require special instructions

• But consumes some memory for I/O

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Direct Memory Access

• Direct access to I/O controller through memory

• Reserve area of memory for communication with
device (“DMA”)

‣ Video RAM:

• CPU writes frame buffer

• Video card displays it

• Fast and convenient

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Synchronization

• How can OS synchronize concurrent processes?

‣ E.g., multiple threads, processes & interrupts, DMA

• CPU must provide mechanism for atomicity

‣ Series of instructions that execute as one or not at all

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Synchronization: How-To
• One approach:

‣ Disable interrupts

‣ Perform action

‣ Enable interrupts

• Advantages:

‣ Requires no hardware support

‣ Conceptually simple

• Disadvantages:

‣ Could cause starvation

• Modern approach: atomic instructions (e.g., test & set,
compare & swap, Intel LOCK instruction)

30

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Address Space
• All locations addressable by the

process

• Can restrict use of addresses
(RW)

• Restrictions enforced by OS

• Every running program can have
its own private address space

‣ How?

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Virtual Memory
• Provide the illusion of infinite memory

• OS loads pages from disk as needed

‣ Page: Fixed sized block of data

• Many benefits

‣ Allows the execution of programs that may not fit entirely
in memory (think MS Office)

• OS needs to maintain mapping between physical and
virtual memory

‣ Page tables stored in memory

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Translation Lookaside Buffer
• Initial virtual memory systems used to do translation

in software

‣ Meaning the OS did it

‣ An additional memory access for each memory access!

• S.l.o.w.!!!

• Modern CPUs contain hardware to do this: the TLB

‣ Fast cache

‣ Modern workloads are TLB-miss dominated

‣ Good things often come in small sizes

• We have seen other instances of this

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Operating System Layers

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

System Layers

• Application

• Libraries (in application process)

• System Services

• OS API

• Operating system kernel

• Hardware

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Application Programming Interface

‣ Library functions (e.g., libc)

• Examples

‣ printf of stdio.h

• All within the process’s address space

‣ Static and Dynamic linking

Applications to Libraries

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Applications to Services

• Provide syntactic sugar for using resources

‣ Printing, program mgmt, network mgmt, file mgmt, etc.

‣ E.g., chmod

• Provide special functions beyond OS

‣ E.g., cron

• UNIX man pages, sections 1 and 8

37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Libraries to System

• System call interface

‣ UNIX man pages, section 2

‣ Examples

• open, read, write – defined in unistd.h

‣ Call these via libraries? fopen vs. open

• Special files

‣ Drivers, /proc, sysfs

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

System to Hardware

• Software-hardware interface

• OS kernel functions

‣ Concepts == Managers -- Hardware

‣ Files == filesystems – drivers/devices

‣ Address space == virtual memory -- memory

‣ Instruction Set == process model -- CPU

• OS provides abstractions of devices and hardware
objects (files)

39

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

System Calls: Overview

40

User Space Kernel Space

User App C Library Kernel Syscall

getpid(void) load args, eax=NR_getpid,
transition to kernel

 (int 0x80) system call

call system_call_table[eax]

sys_getpid

returnsyscall_exit

return_userspace

return

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

System Call Handling

41

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

System Call Handling

42

• Procedure call in user process
• Initial work in user mode (libc)
• Trap instruction to invoke kernel (int 0x80)
• Preparation (e.g., sys_read, mmap2)
• I/O command (read from disk)
• Wait (disk is slow)
• Completion (interrupt handling)
• Return-from-interrupt instruction
• Final work in user mode (libc)
• Ordinary return instruction

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Details on x86 / Linux
• A more accurate picture:
‣ consider a typical Linux

process

‣ its thread of execution can be
several places
• in your program’s code

• in glibc, a shared library
containing the C standard
library, POSIX support, and
more

• in the Linux architecture-
independent code

• in Linux x86-32/x86-64 code

 your
 program

glibc

C standard
library POSIX

architecture-dependent code

architecture-independent code

Linux kernel

Linux
system calls

43

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

Details on x86 / Linux
• Some routines your

program invokes may be
entirely handled by glibc

‣ without involving the kernel

• e.g., strcmp() from stdio.h

‣ ∃ some initial overhead when
invoking functions in
dynamically linked libraries

‣ but, after symbols are
resolved, invoking glibc
routines is nearly as fast as a
function call within your
program itself

architecture-dependent code

architecture-independent code

Linux kernel

POSIX

44

glibc

C standard
library POSIX

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux
• Some routines may be

handled by glibc, but they in
turn invoke Linux system
calls

‣ e.g., POSIX wrappers around
Linux syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

‣ e.g., C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
read(), write(), close(), etc.

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

• Your program can
choose to directly invoke
Linux system calls as well

‣ nothing forces you to link
with glibc and use it

‣ but, relying on directly
invoked Linux system calls
may make your program
less portable across UNIX
varieties architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

46

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Interface

• Goal: Provide a uniform abstraction for accessing the
OS and its resources

• Abstraction: File

‣ Use file system calls to access OS services

‣ Devices, sockets, pipes, etc.

‣ And OS in general

47

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

I/O with System Calls

• Much I/O is based on a streaming model

‣ sequence of bytes	

• write() sends a stream of bytes somewhere	

• read() blocks until a stream of input is ready	

• Annoying details:	

‣ might fail, can block for a while	

‣ file descriptors...	

‣ arguments are pointers to character buffers	

‣ see the read() and write() man pages	

48

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Descriptors
• A process might have several different I/O streams in

use at any given time	

• These are specified by a kernel data structure called a
file descriptor	

‣ each process has its own table of file descriptors	

• open() associates a file descriptor with a file	

• close() destroys a file descriptor	

• Standard input and standard output are usually
associated with a terminal	

‣ more on that later	

49

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Regular File

• File has a pathname: /tmp/foo

• Can open the file

‣ int fd = open(“/tmp/foo”, O_RDWR)

‣ For reading and writing

• Can read from and write to the file

‣ bytes = read(fd, buf, max); /* buf get output */

‣ bytes = write(fd, buf, len); /* buf has input */

50

flags for
read/write

access

pointer to buffer

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Socket File

• File has a pathname: /tmp/bar

‣ Files provide a persistence for a communication channel

‣ Usually used for local communication (UNIX domain
sockets)

• Open, read, and write via socket operations

‣ sockfd = socket(AF_UNIX, TCP_STREAM, 0);

‣ local.path is set to /tmp/bar

‣ bind (sockfd, &local, len)

‣ Use sock operations to read and write

51

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device File

• Files for interacting with physical devices

‣ /dev/null (do nothing)

‣ /dev/cdrom (CD-drive)

• Use file system operations, but are handled in device-
specific ways

‣ open, read, write correspond to device-specific
functions

• Function pointers!

‣ Also, use ioctl (I/O control) to interact (later)

52

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Sysfs File and /proc Files

• These files enable reading from and writing to kernel

• /proc files

‣ enable reading of kernel state for a process

• Sysfs files

‣ Provide functions that update kernel data

• File’s write function updates kernel based on input data

53

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Other System Calls
• It’s possible to hook the output of one program into

the input of another: pipe()

• It’s possible to block until one of several file
descriptor streams is ready: 	
 select()	

• Special calls for dealing with network	

‣ AF_INET sockets, etc.	

• Send a message to other (or all)
processes: signal()

• Most of these in section 2 of manual

‣ e.g., man 2 select

54

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Syscall Functionality
• System calls are the main interface between

processes and the OS	

‣ like an extended “instruction set” for user programs that

hide many details	

‣ first Unix system had a couple dozen system calls	

‣ current systems have many more (>300 in Linux,
>500 in FreeBSD)

‣ Understanding the system call interface of a given OS lets
you write useful programs under it	

• Natural questions to ask:	

‣ is this the right interface? how to evaluate?	

‣ how can these system calls be implemented?	

55

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• Operating systems must balance many needs

‣ Impression that each process has individual use of system

‣ Comprehensive management of system resources

• Operating system structures try to make use of
system resources straightforward

‣ Libraries

‣ System services

‣ System calls and other interfaces

56

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Next Class

• Processes

• Project 1 out

57

