
Computer and Information Science

CIS 415:
Operating Systems

Processes

Prof. Kevin Butler
Spring 2011

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:

‣ Operating system structure and basics

• Today:

‣ Process Management

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Computer Ethics

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Administrivia

• Lab sections: everyone should know where you’re
going

‣ this week: programming with system calls and signals

• Assignment 1: due next Thursday

• Project 1: out today

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• We have programs, so why do we need processes?

Why Processes?

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Overview

• Questions that we explore

‣ How are processes created?

• From binary program to process

‣ How is a process represented and managed?

• Process creation, process control block

‣ How does the OS manage multiple processes?

• Process state, ownership, scheduling

‣ How can processes communicate?

• Interprocess communication, concurrency, deadlock

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Supervisor and User Modes

• OS runs in supervisor mode

‣ Has access to protected instructions only available in that
mode (ring 0)

‣ Can manage the entire system

• OS loads processes into user mode

‣ Many processes can run in user mode

• How does OS get programs loaded into processes in
user mode and keep them straight?

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process

• Address space + threads +
resources

• Address space contains code
and data of a process

• Threads are individual
execution contexts

• Resources are physical support
necessary to run the process
(memory, disk, …)

Text

Data

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Address Space

• Program (Text)

• Global Data (Data)

• Dynamic Data (Heap)

• Thread-local Data (Stack)

• Each thread has its own stack

9

0x00000000

0xFFFFFFFF OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Address Space
int value = 5; Global

int main()
{
 int *p; Stack

 p = (int *)malloc(sizeof(int)); Heap

 if (p == 0) {
 printf("ERROR: Out of memory\n”);
 return 1;
 }

 *p = value;
 printf("%d\n", *p);
 free(p);
 return 0;
}

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

12

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

13

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

malloc

14

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

15

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

16

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

17

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

2 4 6 8

18

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

2 4 6 8

19

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

2 4 6 8

20

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

2 4 6 8

free

21

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

free

22

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

23

#include <stdlib.h>

int *copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation
• Parent process create children processes,

‣ which, in turn create other processes, forming a tree of
processes

• Resource sharing options

‣ Parent and children share all resources

‣ Children share subset of parent’s resources

‣ Parent and child share no resources

• Execution options

‣ Parent and children execute concurrently

‣ Parent waits until children terminate

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation

• Address space

‣ Child duplicate of parent

‣ Child has a program loaded into it

• UNIX examples

‣ fork system call creates new process

‣ exec system call used after a fork to replace the process’s
memory space with a new program

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over
 from the parent

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

Process Layout

26

Id=2000

State=ready

PCB of parent

RAM

OS

Processes
Parent’s memory

Process

calls fork

Id=2001 1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over

 from the parent

Child’s memory

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

State=ready
PCB of child

14

Parent’s PCB Child’s PCB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation

• What happens?

‣ New process object in kernel

• Build process data structures

‣ Allocate address space (abstract resource)

• Later, allocate memory (physical resource)

‣ Add to execution queue

• Runnable?

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

C Program Forking Separate Process

int main()
{
pid_t pid;
 /* fork another process */
 pid = fork();
 if (pid < 0) { /* error occurred */
 fprintf(stderr, "Fork Failed");
 exit(-1);
 }
 else if (pid == 0) { /* child process */
 execlp("/bin/ls", "ls", NULL);
 }
 else { /* parent process */
 /* parent will wait for the child to complete */
 wait (NULL);
 printf ("Child Complete");
 exit(0);
 }
}

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

30

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client

connect

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client

server fork()child

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

server

fork() grandchild

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

child exit()’s / parent wait()’s

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

parent closes its
client connection

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

client

server

fork() child

server
fork() grandchild
exit()

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

client server

39

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

client server

client server

client server

client server

client server

client server

client server

client server

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Program Creation

• Design Choices

‣ Resource Sharing

• What resources of parent should the child share?

• What about after exec?

‣ Execution

• Should parent wait for child?

‣ What is the relationship between parent and child?

• Hierarchical or grouped or …?

41

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Program Creation

• fork -- copy address space and all threads

• forkl -- copy address space and only calling thread

• vfork -- do not copy address space; shared between
parent and child

• exec -- load new program; replace address space

‣ Some resources may be transferred (open file descriptors)

‣ Specified by arguments

42

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

A tree of processes on a typical system

43

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Termination
• Process executes last statement and asks the operating

system to delete it (exit)

‣ Output data from child to parent (via wait)

‣ Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes
(abort)

‣ Child has exceeded allocated resources

‣ Task assigned to child is no longer required

‣ If parent is exiting

• Some operating system do not allow child to continue if
parent terminates

• All children terminated - cascading termination
44

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Executing a Process
• What to execute?

‣ Program status word

‣ Register that stores the program counter

• Next instruction to be executed

• Registers store state of execution
in CPU

‣ Stack pointer

‣ Data registers

• Thread of execution

‣ Has its own stack
45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Executing a Process

• Thread executes over the process’s address space

‣ Usually the text segment

• Until a trap or interrupt…

‣ Time slice expires (timer interrupt)

‣ Another event (e.g., interrupt from other device)

‣ Exception (oops)

‣ System call (switch to kernel mode)

46

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

Details on x86 / Linux

• Let’s walk through how a
Linux system call actually
works

‣ we’ll assume 32-bit x86
using the modern
SYSENTER / SYSEXIT x86
instructions

architecture-dependent code

architecture-independent code

Linux kernel

47

glibc

C standard
library POSIX

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

• Remember our
process address
space picture

‣ let’s add some
details

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
48

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
49

unpriv

IP

SP

process is executing your
program code

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
50

unpriv

IP

SP
glibc begins the process of
invoking a Linux system
call

‣ glibc’s fopen() likely
invokes Linux’s open()
system call

‣ puts the system call # and
arguments into registers

‣ uses the call x86
instruction to call into the
routine __kernel_vsyscall
located in linux-gate.so

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
51

unpriv

IP

SP
linux-gate.so is a vdso

‣ a virtual dynamically
linked shared object

‣ is a kernel-provided
shared library, i.e., is not
associated with a .so file,
but rather is conjured up
by the kernel and plunked
into a process’s address
space

‣ provides the intricate
machine code needed to
trigger a system call

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
52

priv

IP
SPlinux-gate.so eventually

invokes the SYSENTER
x86 instruction

‣ SYSENTER is x86’s “fast
system call” instruction

‣ it has several side-effects

- causes the CPU to raise its
privilege level

- traps into the Linux kernel
by changing the SP, IP to a
previously determined
location

- changes some
segmentation related
registers

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
53

priv

IP
SPThe kernel begins

executing code at the
SYSENTER entry point

‣ is in the architecture-
dependent part of Linux

‣ its job is to:

- look up the system call
number in a system call
dispatch table

- call into the address stored
in that table entry; this is
Linux’s system call handler

- for open(), the handler is
named sys_open, and is
system call #5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
54

priv

IP
SP

The system call handler
executes

‣ what it does is system-call
specific, of course

‣ it may take a long time to
execute, especially if it has to
interact with hardware

- Linux may choose to
context switch the CPU to
a different runnable
process

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
55

priv

IP
SP

Eventually, the system call
handler finishes

‣ returns back to the
system call entry point

- places the system call’s
return value in the
appropriate register

- calls SYSEXIT to return
to the user-level code

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
56

unpriv

IP

SP

SYSEXIT transitions the
processor back to user-
mode code

‣ has several side-effects

- restores the IP, SP to
user-land values

- sets the CPU back to
unprivileged mode

- changes some
segmentation related
registers

‣ returns the processor
back to glibc

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU
57

unpriv

IP

SP

glibc continues to
execute

‣ might execute more
system calls

‣ eventually returns back to
your program code

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Relocatable Memory
• Mechanism that enables the OS to place a program in

an arbitrary location in memory

‣ Gives the programmer the impression that they own the
processor

• Program is loaded into memory at program-specific
locations

‣ Need virtual memory to do this

• Also, may need to share program
code across processes

58

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process State

• What do we need to track about a process?

‣ how many processes?

‣ what’s the state of each of them?

• Process table: kernel data structure tracking
processes on system

• Process control block: structure for tracking process
context

59

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Processes

• Processes transition among execution states

60

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process States

• Running

‣ Running == in processor and in memory with all resources

• Ready

‣ Ready == in memory with all resources, waiting for dispatch

• Waiting

‣ Waiting == waiting for some
event to occur

61

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

State Transitions

• New Process ==> Ready

‣ Allocate resources

‣ End of process queue

• Ready ==> Running

‣ Head of process queue

‣ Scheduled

• Running ==> Ready

‣ Interrupt (Timer)

‣ Back to end of process queue

62

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

State Transitions: Page Fault Handling

• Running ==> Waiting

‣ Page fault exception (similar for syscall or I/O interrupt)

‣ Wait for event

• Waiting ==> Ready

‣ Event has occurred (page fault serviced)

‣ End of process queue (or head?)

• Ready ==> Running

‣ As before…

63

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

State Transitions: Other Issues

• Priorities

‣ Can provide policy indicating which process should run next

• More when we discuss scheduling…

• Yield

‣ System call to give up processor

‣ For a specific amount of time
(sleep)

• Exit

‣ Terminating signal (Ctrl-C)

64

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Control Block

• State of running process

• Linked list of process control information

65

Process Control Block

•! State of running process

•! Linked list of process control information

Process id

Program Counter

…

Other registers

Process state

Ptr to linked list

Main Memory (RAM)

OS

Processes

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Per Process Control Info

• Process state

‣ Ready, running, waiting (momentarily)

• Links to other processes

‣ Children

• Memory Management

‣ Segments and page tables

• Resources

‣ Open files

• And Much More…
66

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

/proc File System

• Linux and Solaris

‣ ls /proc

‣ A directory for each process

• Various process information

‣ /proc/<pid>/io -- I/O statistics

‣ /proc/<pid>/environ -- Environment variables (in
binary)

‣ /proc/<pid>/stat -- process status and info

7

67

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Context Switch
• OS switches from one execution context to another
‣ One process to another process

‣ Interrupt handling

‣ Process to kernel (mode transition, not context switch)

• Current Process to New Process
‣ Save the state of the current process

• Process control block: describes the state of the process in the CPU

‣ Load the saved context for the new process
• Load the new process’s process control block into OS and registers

‣ Start the new process

• Does this differ if we are running an interrupt handler?

68

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Context Switch

69

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Context Switch

• No useful work is being done during a context switch

‣ Speed it up and limit system calls to things that can’t be
done in user mode

• Hardware support

‣ Multiple register sets (Sun UltraSPARC)

• However, hardware optimization may conflict

‣ TLB flush is necessary

‣ Different virtual to physical mappings on different processes

70

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Next class

• IPC

71

