
Computer and Information Science

CIS 415:
Operating Systems

IPC and RPC

Prof. Kevin Butler
Spring 2012

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Administrivia

• Project 1 out

‣ look at it!

• Assignment 1 due in a week

‣ look at it!

• Security Day

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Communication

• Processes need to share information

• Process model is a useful way to isolate running
programs (separate resources, state, etc)

‣ Can simplify programs (no need to worry about other
processes running)

‣ But processes don’t always work in isolation

• Discuss a variety of ways

‣ Doesn’t include regular files
and signals

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process communication

• When is communication necessary?

• Lots of examples in operating systems

‣ threads with access to same data structures

‣ kernel/OS access to user process data

‣ processes sharing data via shared memory

‣ processes sharing data via system calls

‣ processes sharing data via file system

• And in general computer science

‣ DB transactions, P/L parallelism issues

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC Mechanisms

• Two fundamental methods

• Shared memory

‣ Pipes, shared buffer

• Message Passing

‣ Mailboxes, Sockets

• Which one would you use and why?

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Memory

• Two processes share a memory region

‣ One writes: Producer

‣ One reads: Consumer

• Producer action

‣ While buffer not full

‣ Add stuff to buffer

• Consumer actions

‣ When stuff in buffer

‣ Read it

• Must manage where new stuff is in the buffer…

6

Classic example:
Producer/Consumer Problems

•  from time to time, the producer places an item in the buffer
•  the consumer removes an item from the buffer
•  careful synchronization required (they run simultaneously)
•  the consumer must wait if the buffer empty
•  the producer must wait if the buffer full
•  typical solution would involve a shared variable count
•  also known as the Bounded Buffer problem
•  Example: in UNIX shell
 cat myfile.txt | lpr

producer

process

consumer

process

P
buffer

C

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Memory -- Producer

	 item nextProduced;

	 while (1) {

	 	 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

	 	 buffer[in] = nextProduced;

	 	 in = (in + 1) % BUFFER_SIZE;

	 }

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Memory -- Consumer

	 item nextConsumed;

	 while (1) {

	 	 while (in == out)

	 	 	 ; /* do nothing */

	 	 nextConsumed = buffer[out];

	 	 out = (out + 1) % BUFFER_SIZE;

	 }

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Memory
• Communicate by reading/writing from a specific memory

location
‣ Setup a shared memory region in your process

‣ Permit others to attach to the shared memory region

• shmget -- create shared memory segment
‣ Permissions (read and write)

‣ Size

‣ Returns an identifier for segment

• shmat -- attach to existing shared memory segment
‣ Specify identifier

‣ Location in local address space

‣ Permissions (read and write)

• Also, operations for detach and control
9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Pipes
• Producer-Consumer mechanism

‣ prog1 | prog2

‣ The output of prog1 becomes the input to prog2

‣ More precisely,

• The standard output of prog1 is connected to the standard input of prog2

• OS sets up a fixed-size buffer

‣ System calls: pipe, dup, popen

• Producer

‣ Write to buffer, if space available

• Consumer

‣ Read from buffer if data available

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Pipes
• Buffer management
‣ A finite region of memory (array or linked-list)

‣ Wait to produce if no room

‣ Wait to consume if empty

‣ Produce and consume complete items

• Access to buffer
‣ Write adds to buffer (updates end of buffer)

‣ Reader removes stuff from buffer (updates start of buffer)

‣ Both are updating buffer state

• Issues
‣ What happens when end is reached (e.g., in finite array)?

‣ What happens if reading and writing are concurrent?

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Memory Machines
• SGI UV 1000 (Pitt SC)

‣ 256 blades, each with 2 8-core
Xeon processors

‣ Each core has 8 GB RAM =
128 GB per blade

• Coherent shared-memory
machine = all memory
accessible to the machine

‣ 32 TB of RAM

• Why? Certain problems
hard to chunk up (eg graphs)

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Message Passing

• Establish communication link
‣ Producer sends on link

‣ Consumer receives on link

• IPC Operations
‣ Y: Send(X, message)

‣ X: Receive(Y, message)

• Issues
‣ What if X wants to receive from anyone?

‣ What if X and Y aren’t ready at same time?

‣ What size message can X receive?

‣ Can other processes receive the same message from Y?

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Synchronous Messaging

• Direct communication from one process to another

• Synchronous send
‣ Send(X, message)

‣ Producer must wait for the consumer to be ready to receive the
message

• Synchronous receive
‣ Receive(id, message)

‣ Id could be X or anyone

‣ Wait for someone to deliver a message

‣ Allocate enough space to receive message

• Synchronous means that both have to be ready!

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Asynchronous Messaging

• Indirect communication from one process to another

• Asynchronous send
‣ Send(M, message)

‣ Producer sends message to a buffer M (like a mailbox)

‣ No waiting (modulo busy mailbox)

• Asynchronous receive
‣ Receive(M, message)

‣ Receive a message from a specific buffer (get your mail)

‣ No waiting (modulo busy mailbox)

‣ Allocate enough space to receive message

• Asynchronous means that you can send/receive when you’re ready
‣ What are some issues with the buffer?

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Sockets
• Communcation end point

‣ Connect one socket to another (TCP/IP)

‣ Send/receive message to/from another socket (UDP/IP)

• Sockets are named by
‣ IP address (roughly, machine)

‣ Port number (service: ssh, http, etc.)

• Semantics
‣ Bidirectional link between a pair of sockets

‣ Messages: unstructured stream of bytes

• Connection between
‣ Processes on same machine (UNIX domain sockets)

‣ Processes on different machines (TCP or UDP sockets)

‣ User process and kernel (netlink sockets)

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Files and file descriptors

• Remember open, read, write, and close?

‣ POSIX system calls for interacting with files

‣ open() returns a file descriptor

• an integer that represents an open file

• inside the OS, it’s an index into a table that keeps track of any state
associated with your interactions, such as the file position

• you pass the file descriptor into read, write, and close

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Networks and sockets

• UNIX likes to make all I/O look like file I/O

‣ the good news is that you can use read() and write() to interact
with remote computers over a network!

‣ just like with files....

• your program can have multiple network channels open at once

• you need to pass read() and write() a file descriptor to let the
OS know which network channel you want to write to or read
from

‣ a file descriptor used for network communications is a socket

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Examples of sockets

• HTTP / SSL

• email (POP/IMAP)

• ssh

• telnet

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Pictorially

Web server

fd 5 fd 8 fd 9 fd 3

in
de

x.
ht

m
l

pi
c.

pn
g

client client

10.12.3.4 : 5544 44.1.19.32 : 7113

128.95.4.33

8080

Internet

file
descriptor type connected to?

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP
socket

local: 128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP
socket

local: 128.95.4.33:80
remote: 102.12.3.4:5544

OS’s descriptor table

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Types of sockets

• Stream sockets

‣ for connection-oriented, point-to-point, reliable bytestreams

• uses TCP, SCTP, or other stream transports

• Datagram sockets

‣ for connection-less, one-to-many, unreliable packets

• uses UDP or other packet transports

• Raw sockets

‣ for layer-3 communication (raw IP packet manipulation)

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Stream sockets

• Typically used for client /
server communications

‣ but also for other
architectures, like peer-to-peer

• Client

‣ an application that establishes
a connection to a server

• Server

‣ an application that receives
connections from clients

client server

1. establish connection

client server

2. communicate

server

3. close connection

client

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Datagram sockets

• Used less frequently than
stream sockets

‣ they provide no flow control,
ordering, or reliability

• Often used as a building
block

‣ streaming media applications

‣ sometimes, DNS lookups

host

host

1. create socket
host

host

1. create socket

1. create socket

host

host

2. communicate

host

host

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Sockets

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Sockets
• Issues

• Communication semantics
• Reliable or not

• Naming
‣ How do we know a machine’s IP address? DNS

‣ How do we know a service’s port number?

• Protection
‣ Which ports can a process use?

‣ Who should you receive a message from?

• Services are often open -- listen for any connection

• Performance
‣ How many copies are necessary?

‣ Data must be converted between various data types

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Procedure Calls
• IPC via a procedure call
‣ Looks like a “normal” procedure call

‣ However, the called procedure is run by another process

• Maybe even on another machine

• RPC mechanism
‣ Client stub

‣ “Marshall” arguments

‣ Find destination for RPC

‣ Send call and marshalled arguments to destination (e.g., via socket)

‣ Server stub

‣ Unmarshalls arguments

‣ Calls actual procedure on server side

‣ Return results (marshall for return)

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Procedure Calls

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Procedure Calls

• Supported by systems

‣ Java RMI

‣ CORBA

• Issues

‣ Support to build client/server stubs and marshalling code

‣ Layer on existing mechanism (e.g., sockets)

‣ Remote party crashes… then what?

• Performance versus abstractions

‣ What if the two processes are on the same machine?

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Procedure Calls

• Marshalling

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Example (RMI Server)

30

 public class RmiServer extends UnicastRemoteObject
 implements RmiServerIntf {
 public static final String MESSAGE = "Hello world";

 public RmiServer() throws RemoteException {
 }
 public String getMessage() {
 return MESSAGE;
 }
 public static void main(String args[]) {
 System.out.println("RMI server started");

 // Create and install a security manager
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 System.out.println("Security manager installed.");
 } else {
 System.out.println("Security manager already exists.");
 }

...
 try {
 //Instantiate RmiServer
 RmiServer obj = new RmiServer();

 // Bind this object instance to the name "RmiServer"
 Naming.rebind("//localhost/RmiServer", obj);

 System.out.println("PeerServer bound in registry");
 } catch (Exception e) {
 System.err.println("RMI server exception:" + e);
 e.printStackTrace();
 }
 }
}

Binding to registry

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Example (RMI Interface)

31

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RmiServerIntf extends Remote {
 public String getMessage() throws RemoteException;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Example (RMI Client)

32

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;

public class RmiClient {
 // "obj" is the reference of the remote object
 RmiServerIntf obj = null;

 public String getMessage() {
 try {
 obj = (RmiServerIntf)Naming.lookup("//localhost/RmiServer");
 return obj.getMessage();
 } catch (Exception e) {
 System.err.println("RmiClient exception: " + e);
 e.printStackTrace();

 return e.getMessage();
 }
 }

 public static void main(String args[]) {
 // Create and install a security manager
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 RmiClient cli = new RmiClient();

 System.out.println(cli.getMessage());
 }
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

MapReduce
• Distributed computing framework for working on

large data sets on compute clusters

• Divide data into subset that are “mapped” to each
node involved in computation

• Collect all subproblem answer and “reduce” to form
the final output

• Uses:

‣ distributed sort and grep

‣ graph reversal and search

‣ statistical analysis and web analytics, bioinformatics

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

MapReduce

34

void map(String name, String document):

 // name: document name
 // document: document contents
 for each word w in document:
 EmitIntermediate(w, "1");

void reduce(String word, Iterator partialCounts):
 // word: a word
 // partialCounts: a list of aggregated partial counts
 int sum = 0;
 for each pc in partialCounts:
 sum += ParseInt(pc);
 Emit(word, AsString(sum));

Concepts come from functional programming
(pay attention in CIS 425!)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Hadoop & Map/Reduce

35

WordCount.java
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.*;

public class WordCount {
 public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken()); /* splits lines into words */
 output.collect(word, one);
 }
 }
 }
 public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text,
IntWritable> {
 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get(); /* sums all the collected words */
 }
 output.collect(key, new IntWritable(sum));
 }
 }
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 36

 public static void main(String[] args) throws Exception {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");
 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);
 conf.setMapperClass(Map.class);
 conf.setCombinerClass(Reduce.class); /* collects all values together */
 conf.setReducerClass(Reduce.class);
 conf.setInputFormat(TextInputFormat.class);
 conf.setOutputFormat(TextOutputFormat.class);
 FileInputFormat.setInputPaths(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));
 JobClient.runJob(conf);
 }

Hadoop & Map/Reduce

Scalable framework: works on single-node
machine, “pseudo-distributed” (single machine,
multiple processes), or fully distributed cluster
(depending on how Hadoop installation is set up)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC Summary
• Lots of mechanisms
‣ Pipes

‣ Shared memory

‣ Sockets

‣ RPC

• Trade-offs
‣ Ease of use, functionality, flexibility, performance

• Implementation must maximize these
‣ Minimize copies (performance)

‣ Synchronous vs Asynchronous (ease of use, flexibility)

‣ Local vs Remote (functionality)
37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary
• Process
‣ Execution state of a program

• Process Creation
‣ fork and exec

‣ From binary representation

• Process Description
‣ Necessary to manage resources and context switch

• Process Scheduling
‣ Process states and transitions among them

• Interprocess Communication
‣ Ways for processes to interact (other than normal files)

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Threads

39

