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Administrivia

• Project 1 out

‣ look at it!

• Assignment 1 due in a week

‣ look at it!

• Security Day
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Process Communication

• Processes need to share information

• Process model is a useful way to isolate running 
programs (separate resources, state, etc)

‣ Can simplify programs (no need to worry about other 
processes running)

‣ But processes don’t always work in isolation

• Discuss a variety of ways

‣ Doesn’t include regular files 
and signals
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Process communication

• When is communication necessary?

• Lots of examples in operating systems

‣ threads with access to same data structures

‣ kernel/OS access to user process data

‣ processes sharing data via shared memory

‣ processes sharing data via system calls

‣ processes sharing data via file system

• And in general computer science

‣ DB transactions, P/L parallelism issues
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IPC Mechanisms

• Two fundamental methods

• Shared memory

‣ Pipes, shared buffer

• Message Passing

‣ Mailboxes, Sockets

• Which one would you use and why?
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Shared Memory

• Two processes share a memory region

‣ One writes: Producer

‣ One reads: Consumer

• Producer action

‣ While buffer not full

‣ Add stuff to buffer

• Consumer actions

‣ When stuff in buffer 

‣ Read it

• Must manage where new stuff is in the buffer…
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Classic example: 
Producer/Consumer Problems 

•  from time to time, the producer places an item in the buffer 
•  the consumer removes an item from the buffer 
•  careful synchronization required (they run simultaneously) 
•  the consumer must wait if the buffer empty 
•  the producer must wait if the buffer full 
•  typical solution would involve a shared variable count  
•  also known as the Bounded Buffer problem 
•  Example: in UNIX shell 
    cat myfile.txt   |    lpr 

producer 

process 

consumer 

process 

P 
buffer 

C 
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Shared Memory -- Producer

	 item nextProduced;

	 while (1) {

	 	 while (((in + 1) % BUFFER_SIZE) == out)

   ; /* do nothing */

	 	 buffer[in] = nextProduced;

	 	 in = (in + 1) % BUFFER_SIZE;

	 }
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Shared Memory -- Consumer

	 item nextConsumed;

	 while (1) {

	 	 while (in == out)

	 	 	 ; /* do nothing */

	 	 nextConsumed = buffer[out];

	 	 out = (out + 1) % BUFFER_SIZE;

	 }
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Shared Memory
• Communicate by reading/writing from a specific memory 

location
‣ Setup a shared memory region in your process

‣ Permit others to attach to the shared memory region

• shmget -- create shared memory segment
‣ Permissions (read and write)

‣ Size

‣ Returns an identifier for segment

• shmat -- attach to existing shared memory segment
‣ Specify identifier

‣ Location in local address space

‣ Permissions (read and write)

• Also, operations for detach and control 
9
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Pipes
• Producer-Consumer mechanism

‣ prog1 | prog2

‣ The output of prog1 becomes the input to prog2

‣ More precisely,

• The standard output of prog1 is connected to the standard input of prog2

• OS sets up a fixed-size buffer 

‣ System calls: pipe, dup, popen

• Producer

‣ Write to buffer, if space available

• Consumer 

‣ Read from buffer if data available
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Pipes
• Buffer management
‣ A finite region of memory (array or linked-list)

‣ Wait to produce if no room

‣ Wait to consume if empty

‣ Produce and consume complete items

• Access to buffer
‣ Write adds to buffer (updates end of buffer)

‣ Reader removes stuff from buffer (updates start of buffer)

‣ Both are updating buffer state

• Issues
‣ What happens when end is reached (e.g., in finite array)?

‣ What happens if reading and writing are concurrent?
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Shared Memory Machines
• SGI UV 1000 (Pitt SC)

‣ 256 blades, each with 2 8-core 
Xeon processors

‣ Each core has 8 GB RAM = 
128 GB per blade

• Coherent shared-memory 
machine = all memory 
accessible to the machine

‣ 32 TB of RAM

• Why? Certain problems 
hard to chunk up (eg graphs)
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IPC -- Message Passing

• Establish communication link
‣ Producer sends on link

‣ Consumer receives on link

• IPC Operations
‣ Y: Send(X, message)

‣ X: Receive(Y, message)

• Issues
‣ What if X wants to receive from anyone?

‣ What if X and Y aren’t ready at same time?

‣ What size message can X receive?

‣ Can other processes receive the same message from Y?
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IPC -- Synchronous Messaging

• Direct communication from one process to another

• Synchronous send
‣ Send(X, message) 

‣ Producer must wait for the consumer to be ready to receive the 
message

• Synchronous receive
‣ Receive(id, message)

‣ Id could be X or anyone

‣ Wait for someone to deliver a message

‣ Allocate enough space to receive message

• Synchronous means that both have to be ready!
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IPC -- Asynchronous Messaging

• Indirect communication from one process to another

• Asynchronous send
‣ Send(M, message) 

‣ Producer sends message to a buffer M (like a mailbox)

‣ No waiting (modulo busy mailbox)

• Asynchronous receive
‣ Receive(M, message)

‣ Receive a message from a specific buffer (get your mail)

‣ No waiting (modulo busy mailbox)

‣ Allocate enough space to receive message

• Asynchronous means that you can send/receive when you’re ready
‣ What are some issues with the buffer?
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IPC -- Sockets
• Communcation end point

‣ Connect one socket to another (TCP/IP)

‣ Send/receive message to/from another socket (UDP/IP)

• Sockets are named by
‣ IP address (roughly, machine)

‣ Port number (service: ssh, http, etc.)

• Semantics
‣ Bidirectional link between a pair of sockets

‣ Messages: unstructured stream of bytes

• Connection between
‣ Processes on same machine (UNIX domain sockets)

‣ Processes on different machines (TCP or UDP sockets)

‣ User process and kernel (netlink sockets)
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Files and file descriptors

• Remember open, read, write, and close?

‣ POSIX system calls for interacting with files

‣ open( ) returns a file descriptor

• an integer that represents an open file

• inside the OS, it’s an index into a table that keeps track of any state 
associated with your interactions, such as the file position

• you pass the file descriptor into read, write, and close
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Networks and sockets

• UNIX likes to make all I/O look like file I/O

‣ the good news is that you can use read( ) and write( ) to interact 
with remote computers over a network!

‣ just like with files....

• your program can have multiple network channels open at once

• you need to pass read( ) and write( ) a file descriptor to let the 
OS know which network channel you want to write to or read 
from

‣ a file descriptor used for network communications is a socket
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Examples of sockets

• HTTP / SSL

• email (POP/IMAP)

• ssh

• telnet
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Pictorially

Web server

fd 5 fd 8 fd 9 fd 3

in
de

x.
ht

m
l

pi
c.

pn
g

client client

10.12.3.4 : 5544 44.1.19.32 : 7113

128.95.4.33

8080

Internet

file
descriptor type connected to?

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP
socket

local:   128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP
socket

local:   128.95.4.33:80
remote: 102.12.3.4:5544

OS’s descriptor table
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Types of sockets

• Stream sockets

‣ for connection-oriented, point-to-point, reliable bytestreams

• uses TCP, SCTP, or other stream transports

• Datagram sockets

‣ for connection-less, one-to-many, unreliable packets

• uses UDP or other packet transports

• Raw sockets

‣ for layer-3 communication (raw IP packet manipulation)
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Stream sockets

• Typically used for client / 
server communications

‣ but also for other 
architectures, like peer-to-peer

• Client

‣ an application that establishes 
a connection to a server

• Server

‣ an application that receives 
connections from clients

client server

1. establish connection

client server

2. communicate

server

3. close connection

client
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Datagram sockets

• Used less frequently than 
stream sockets

‣ they provide no flow control, 
ordering, or reliability

• Often used as a building 
block

‣ streaming media applications

‣ sometimes, DNS lookups

host

host

1. create socket
host

host

1. create socket

1. create socket

host

host

2. communicate

host

host
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IPC -- Sockets

24
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IPC -- Sockets
• Issues

• Communication semantics
• Reliable or not

• Naming
‣ How do we know a machine’s IP address? DNS

‣ How do we know a service’s port number?

• Protection
‣ Which ports can a process use?

‣ Who should you receive a message from?

• Services are often open -- listen for any connection

• Performance
‣ How many copies are necessary?

‣ Data must be converted between various data types
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Remote Procedure Calls
• IPC via a procedure call
‣ Looks like a “normal” procedure call

‣ However, the called procedure is run by another process

• Maybe even on another machine

• RPC mechanism
‣ Client stub

‣ “Marshall” arguments

‣ Find destination for RPC

‣ Send call and marshalled arguments to destination (e.g., via socket)

‣ Server stub 

‣ Unmarshalls arguments

‣ Calls actual procedure on server side

‣ Return results (marshall for return)
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Remote Procedure Calls

27



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Procedure Calls

• Supported by systems

‣ Java RMI

‣ CORBA

• Issues

‣ Support to build client/server stubs and marshalling code

‣ Layer on existing mechanism (e.g., sockets)

‣ Remote party crashes… then what?

• Performance versus abstractions

‣ What if the two processes are on the same machine?
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Remote Procedure Calls

• Marshalling

29
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Example (RMI Server)

30

 public class RmiServer extends UnicastRemoteObject 
    implements RmiServerIntf {
    public static final String MESSAGE = "Hello world";
 
    public RmiServer() throws RemoteException {
    }
    public String getMessage() {
        return MESSAGE;
    }
    public static void main(String args[]) {
        System.out.println("RMI server started");
 
        // Create and install a security manager
        if (System.getSecurityManager() == null) {
            System.setSecurityManager(new RMISecurityManager());
            System.out.println("Security manager installed.");
        } else {
            System.out.println("Security manager already exists.");
        }
 
... 
        try {
            //Instantiate RmiServer
            RmiServer obj = new RmiServer();
 
            // Bind this object instance to the name "RmiServer"
            Naming.rebind("//localhost/RmiServer", obj);
 
            System.out.println("PeerServer bound in registry");
        } catch (Exception e) {
            System.err.println("RMI server exception:" + e);
            e.printStackTrace();
        }
    }
}

Binding to registry
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Example (RMI Interface)
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import java.rmi.Remote;
import java.rmi.RemoteException;
 
public interface RmiServerIntf extends Remote {
    public String getMessage() throws RemoteException;
}
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Example (RMI Client)
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import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
 
public class RmiClient { 
    // "obj" is the reference of the remote object
    RmiServerIntf obj = null; 
 
    public String getMessage() { 
        try { 
            obj = (RmiServerIntf)Naming.lookup("//localhost/RmiServer");
            return obj.getMessage(); 
        } catch (Exception e) { 
            System.err.println("RmiClient exception: " + e); 
            e.printStackTrace(); 
 
            return e.getMessage();
        } 
    } 
 
    public static void main(String args[]) {
        // Create and install a security manager
        if (System.getSecurityManager() == null) {
            System.setSecurityManager(new RMISecurityManager());
        }
 
        RmiClient cli = new RmiClient();
 
        System.out.println(cli.getMessage());
    }
}
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MapReduce
• Distributed computing framework for working on 

large data sets on compute clusters

• Divide data into subset that are “mapped” to each 
node involved in computation

• Collect all subproblem answer and “reduce” to form 
the final output

• Uses:

‣ distributed sort and grep

‣ graph reversal and search

‣ statistical analysis and web analytics, bioinformatics
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MapReduce

34

void map(String name, String document):

  // name: document name
  // document: document contents
  for each word w in document:
    EmitIntermediate(w, "1");
 
void reduce(String word, Iterator partialCounts):
  // word: a word
  // partialCounts: a list of aggregated partial counts
  int sum = 0;
  for each pc in partialCounts:
    sum += ParseInt(pc);
  Emit(word, AsString(sum));

Concepts come from functional programming 
(pay attention in CIS 425!)
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Hadoop & Map/Reduce
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WordCount.java
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.*;

public class WordCount {
   public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
     private final static IntWritable one = new IntWritable(1);
     private Text word = new Text();
     public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter 
reporter) throws IOException {
       String line = value.toString();
       StringTokenizer tokenizer = new StringTokenizer(line);
       while (tokenizer.hasMoreTokens()) {
         word.set(tokenizer.nextToken());   /* splits lines into words */
         output.collect(word, one);
       }
     }
   }
   public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, 
IntWritable> {
     public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, 
Reporter reporter) throws IOException {
       int sum = 0;
       while (values.hasNext()) {
         sum += values.next().get();    /* sums all the collected words */
       }
       output.collect(key, new IntWritable(sum));
     }
   }
}
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   public static void main(String[] args) throws Exception {
     JobConf conf = new JobConf(WordCount.class);
     conf.setJobName("wordcount");
     conf.setOutputKeyClass(Text.class);
     conf.setOutputValueClass(IntWritable.class);
     conf.setMapperClass(Map.class);
     conf.setCombinerClass(Reduce.class); /* collects all values together */
     conf.setReducerClass(Reduce.class);
     conf.setInputFormat(TextInputFormat.class);
     conf.setOutputFormat(TextOutputFormat.class);
     FileInputFormat.setInputPaths(conf, new Path(args[0]));
     FileOutputFormat.setOutputPath(conf, new Path(args[1]));
     JobClient.runJob(conf);
   }

Hadoop & Map/Reduce

Scalable framework: works on single-node 
machine, “pseudo-distributed” (single machine, 
multiple processes),  or fully distributed cluster 
(depending on how Hadoop installation is set up)
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IPC Summary
• Lots of mechanisms
‣ Pipes

‣ Shared memory

‣ Sockets

‣ RPC

• Trade-offs 
‣ Ease of use, functionality, flexibility, performance

• Implementation must maximize these
‣ Minimize copies (performance)

‣ Synchronous vs Asynchronous (ease of use, flexibility)

‣ Local vs Remote (functionality)
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Summary
• Process 
‣ Execution state of a program

• Process Creation
‣ fork and exec

‣ From binary representation

• Process Description
‣ Necessary to manage resources and context switch 

• Process Scheduling
‣ Process states and transitions among them

• Interprocess Communication
‣ Ways for processes to interact (other than normal files)
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• Next time: Threads
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