UNIVERSITY OF OREGON

O

CIS 415:

Operating Systems
IPC and RPC

Prof. Kevin Butler
Spring 2012

O

Administrivia

OF OREGON

* Project | out

» look at it!

* Assignment | due in a week

» look at it!

* Security Day

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 2

O

Process Communication

OF OREGON

* Processes need to share information

* Process model is a useful way to isolate running
programs (separate resources, state, etc)

» Can simplify programs (no need to worry about other
processes running)

» But processes don’t always work in isolation

* Discuss a variety of ways

» Doesn’t include regular files
and signals

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 3

O

Process communication

OF OREGON

* When is communication necessary?

* Lots of examples in operating systems
» threads with access to same data structures
» kernel/OS access to user process data
» processes sharing data via shared memory
» processes sharing data via system calls

» processes sharing data via file system

* And in general computer science

» DB transactions, P/L parallelism issues

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 4

IPC Mechanisms O

OF OREGON

 Two fundamental methods

* Shared memory

» Pipes, shared buffer

* Message Passing

» Mailboxes, Sockets

* Which one would you use and why!?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 5

O

Shared Memory

OF OREGON

* Two processes share a memory region
» One writes: Producer

» One reads: Consumer

* Producer action

producer b consumer
. uffer
» While buffer not full < > < >
» Add stuff to buffer process process

« Consumer actions
» When stuff in buffer

» Read it

* Must manage where new stuff is in the buffer...

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 6

O

UNIVERSITY
OF OREGON

Shared Memory -- Producer

item nextProduced;

while (1) {
while (((in + |) % BUFFER SIZE) == out)
; I* do nothing */
buffer[in] = nextProduced;
in = (in + |) % BUFFER _SIZE;

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 7

O

UNIVERSITY
OF OREGON

Shared Memory -- Consumer

item nextConsumed;

while (1) {
while (in == out)
; I* do nothing */
nextConsumed = buffer[out];
out = (out + |) % BUFFER_SIZE;

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 8

O

UNIVERSITY
OF OREGON

Shared Memory

* Communicate by reading/writing from a specific memory
location

» Setup a shared memory region in your process

» Permit others to attach to the shared memory region

* shmget -- create shared memory segment
» Permissions (read and write)
» Size

» Returns an identifier for segment

* shmat -- attach to existing shared memory segment
» Specify identifier
» Location in local address space

» Permissions (read and write)

* Also, operations for detach and control

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 9

O

UNIVERSITY
OF OREGON

* Producer-Consumer mechanism
» progl | prog2
» The output of progl becomes the input to prog?2

» More precisely,

The standard output of progl is connected to the standard input of prog2

« OS sets up a fixed-size buffer

» System calls: pipe, dup, popen
* Producer

» Write to buffer, if space available
« Consumer

» Read from buffer if data available

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

* Buffer management
» A finite region of memory (array or linked-list)
» Wit to produce if no room
» Wait to consume if empty

» Produce and consume complete items
* Access to buffer

» Write adds to buffer (updates end of buffer)

» Reader removes stuff from buffer (updates start of buffer)

» Both are updating buffer state
* Issues

» What happens when end is reached (e.g., in finite array)?

» What happens if reading and writing are concurrent?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Shared Memory Machines

OF OREGON

+ SGI UV 1000 (Pitt SC)

» 256 blades, each with 2 8-core
Xeon processors

» Each core has S GBRAM = ol o = ,
128 GB per blade 4 , < e

* Coherent shared-memory ‘
. . naﬂ'L,!J
machine = all memory
accessible to the machine ©

» 32 TB of RAM

* Why! Certain problems
hard to chunk up (eg graphs)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

IPC -- Message Passing

OF OREGON

 Establish communication link

» Producer sends on link

» Consumer receives on link

* |PC Operations

» Y:Send(X, message)

» X:Receive(Y, message)
* |ssues

» What if X wants to receive from anyone!

» What if X andY aren’t ready at same time!

» What size message can X receive!

» Can other processes receive the same message from Y?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

IPC -- Synchronous Messaging

* Direct communication from one process to another

* Synchronous send
» Send(X, message)

» Producer must wait for the consumer to be ready to receive the
message

* Synchronous receive
» Receive(id, message)
» Id could be X or anyone
» Wait for someone to deliver a message

» Allocate enough space to receive message

* Synchronous means that both have to be ready!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

IPC -- Asynchronous Messaging

Indirect communication from one process to another

* Asynchronous send
» Send(M, message)
» Producer sends message to a buffer M (like a mailbox)

» No waiting (modulo busy mailbox)

* Asynchronous receive
» Receive(M, message)
» Receive a message from a specific buffer (get your mail)
» No waiting (modulo busy mailbox)

» Allocate enough space to receive message

* Asynchronous means that you can send/receive when you'’re ready

» What are some issues with the buffer?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

IPC -- Sockets —

OF OREGON

* Communcation end point
» Connect one socket to another (TCP/IP)

» Send/receive message to/from another socket (UDP/IP)

* Sockets are named by
» |P address (roughly, machine)

» Port number (service: ssh, http, etc.)

* Semantics
» Bidirectional link between a pair of sockets

» Messages: unstructured stream of bytes

* Connection between
» Processes on same machine (UNIX domain sockets)
» Processes on different machines (TCP or UDP sockets)

» User process and kernel (netlink sockets)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Flles and file descriptors

OF OREGON

* Remember open, read, write, and close!?

» POSIX system calls for interacting with files
» open() returns a file descriptor
* an integer that represents an open file

* inside the OS,it’s an index into a table that keeps track of any state
associated with your interactions, such as the file position

* you pass the file descriptor into read, write, and close

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Networks and sockets

 UNIX likes to make all I/O look like file I/O

» the good news is that you can use read() and write() to interact
with remote computers over a network!

» just like with files....

* your program can have multiple network channels open at once

* you need to pass read() and write() a file descriptor to let the
OS know which network channel you want to write to or read
from

» a file descriptor used for network communications is a socket

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Examples of sockets S

OF OREGON

« HTTP / SSL
+ email (POP/IMAP)

* ssh
.| Telnet towel bsakenlight sl

* telnet

7N\
loo D e’ re
N
u F.oo N i
NN NN/
N NS N
IN 7]
) Y

I SN

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Pictorially S

OF OREGON

il type connected to!
descriptor 7P '
128.95.4.33
0 pipe stdin (console)
Web server
| pipe stdout (console)
fd5 fd8 fd9 {fd3 :
2 pipe stderr (console)
(] (] ®
80 380 3 TCP local: 128.95.4.33:80
v socket remote: 44.1.19.32:7113
= F
= ¥ 5 file index.html
= - 8 file pic.png
9 TCP local: 128.95.4.33:80
) socket remote: 102.12.3.4:5544

client §l client

10.12.3.4 : 5544 44.1.19.32 : 7113

OS’s descriptor table

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

lypes of sockets

OF OREGON

* Stream sockets
» for connection-oriented, point-to-point, reliable bytestreams

 uses TCP,SCTP or other stream transports

* Datagram sockets
» for connection-less, one-to-many, unreliable packets

* uses UDP or other packet transports

 Raw sockets

» for layer-3 communication (raw IP packet manipulation)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Stream sockets

* Typically used for client /
server commuhnications

» but also for other
architectures, like peer-to-peer

 Client

» an application that establishes
a connection to a server

 Server

» an application that receives
connections from clients

O

UNIVERSITY
OF OREGON

client CEGEEEEEEEE > server

1. establish connection

Server

2. communicate

client E& ™ server

3. close connection

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Datagram sockets

OF OREGON

1. create socket

* Used less frequently than
stream sockets

1. create socket 1. create socket
» they provide no flow control,
ordering, or reliability

* Often used as a building
block

: : C e host
» streaming media applications -

v

» sometimes, DNS lookups L
: m
2. commumcate\,

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Sockets O

OF OREGON

host X
(146.86.5.20)

socket

(146.86.5.2/1625) web server

(161.25.19.8)

socket
(161.25.19.8/80)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

IPC -- Sockets O

UNIVERSITY
OF OREGON

* |ssues
« Communication semantics
« Reliable or not
* Naming
» How do we know a machine’s IP address? DNS
» How do we know a service’s port number?
* Protection

» Which ports can a process use!

» Who should you receive a message from!?

« Services are often open -- listen for any connection

* Performance

» How many copies are necessary!?

» Data must be converted between various data types

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Remote Procedure Calls

* |PC via a procedure call
» Looks like a “normal” procedure call
» However, the called procedure is run by another process

* Maybe even on another machine

« RPC mechanism

» Client stub

» “Marshall” arguments

» Find destination for RPC

» Send call and marshalled arguments to destination (e.g., via socket)
» Server stub

» Unmarshalls arguments

» Calls actual procedure on server side

» Return results (marshall for return)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Proce

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

messages

/" From: client
To: server

»

kernel places
port P in user
RPC
message

.l.Port matchmaker
\\ Re: address
for RPC X

/" From: server
To: client

kernel sends
RPC

matchmaker
receives
message, looks
up answer

Port: kernel
Re: RPC X
Port: P :

o

/7

From: client
To: server

kernel receives
reply, passes
it to user

matchmaker
replies to client
with port P

'\ FPort: port P
N contents >

' From: RPC
Port: P To:

daemon
listening to
port P receives
message

chent
\ Port: kernel
. =outlpul=>

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

daemon
processes
request and
processes send
oultlpul

UNIVERSITY
OF OREGON

O

Remote Procedure Calls

OF OREGON

* Supported by systems
» Java RMI
» CORBA

* [ssues
» Support to build client/server stubs and marshalling code
» Layer on existing mechanism (e.g., sockets)

» Remote party crashes... then what!?

 Performance versus abstractions

» What if the two processes are on the same machine!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Remote Procedure Calls

* Marshalling

client

remote object

val = server.someMethod(A,B)

stub

boolean someMethod (Object x, Object y)
{

iImplementation of someMethod

t |

skeleton

A, B, someMethod

boolean return value

O

UNIVERSITY
OF OREGON

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Example (RMI Server) S

OF OREGON

public class RmiServer extends UnicastRemoteObject
implements RmiServerIntf {
public static final String MESSAGE = "Hello world";

public RmiServer() throws RemoteException {

}
public String getMessage() {

return MESSAGE;

}

gs[]) {

System.out.println("RMI server started");

// Create and install a security manager

if (System.getSecurityManager() == null) {
System.setSecurityManager (new RMISecurityManager());
System.out.println("Security manager installed.");

} else {
System.out.println("Security manager already exists.");

}

try {
//Instantiate RmiServer

RmiServer obj = new RmiServer(); Blndlng tO fegIStl'y

// Bind this object instance to the name "RmiServer"
Naming.rebind("//localhost/RmiServer", obj);

System.out.println("PeerServer bound in registry");
} catch (Exception e) {
(
)

System.err.println("RMI server exception:" + e);

e.printStackTrace(

4

Oregon Systerns Infrastructure Research and Information Security (OSIRIS) Lab

O

Example (RMI Interface) S

OF OREGON

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RmiServerIntf extends Remote {
public String getMessage() throws RemoteException;

}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Example (RMI Client) o

OF OREGON

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;

public class RmiClient {
// "obj" is the reference of the remote object
RmiServerIntf obj = null;

public String getMessage() {
try {
obj = (RmiServerIntf)Naming.lookup("//localhost/RmiServer");
return obj.getMessage();
} catch (Exception e) {
System.err.println("RmiClient exception: " + e);
e.printStackTrace();

return e.getMessage();

}

}

public static void main(String args[]) {
// Create and install a security manager
if (System.getSecurityManager() == null) {

System.setSecurityManager (new RMISecurityManager());

}
RmiClient cli = new RmiClient();
System.out.println(cli.getMessage());

}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

MapReduce

OF OREGON

* Distributed computing framework for working on
large data sets on compute clusters

» Divide data into subset that are “mapped” to each
node involved in computation

* Collect all subproblem answer and “reduce” to form
the final output

* Uses:
» distributed sort and grep
» graph reversal and search

» statistical analysis and web analytics, bioinformatics

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

MapReduce S

OF OREGON

volid map(String name, String document):

// name: document name
// document: document contents
each word w in document:
EmitIntermediate(w, "1");

void reduce(String word, Iterator partialCounts):
// word: a word
// partialCounts: a list of aggregated partial counts
int sum = 0;
each pc in partialCounts:
sum += ParselInt(pc);
Emit (word, AsString(sum));

Concepts come from functional programming
(pay attention in CIS 425!)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Hadoop & Map/Reduce O

UNIVERSITY
OF OREGON

WordCount.java
package org.myorg;

import java.io.IOException;
import java.util.*;
import org.apache.hadoop.*;

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable>
private final static IntWritable one = new IntWritable(l);
private Text word = new Text ();

public void map (LongWritable key, Text value, OutputCollector<Text, IntWritable> output,

Reporter
reporter) throws IOException {

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer (line);
while (tokenizer.hasMoreTokens ()) {
word.set (tokenizer.nextToken ()) ; /* splits lines into words */

output.collect (word, one);
}
}
}

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce (Text key, Iterator<IntWritable> values, OutputCollector<Text,

IntWritable> output,
Reporter reporter) throws IOException {

int sum = 0O;
while (values.hasNext()) {
sum += values.next ().get(); /* sums all the collected words */

}
output.collect (key, new IntWritable(sum)) ;

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Hadoop & Map/Reduce o

OF OREGON

public static void main (String[] args) throws Exception {
JobConf conf = new JobConf (WordCount.class);

conft.
.setOutputKeyClass (Text.class) ;
conft.

conf

conf
conf

setJobName ("wordcount") ;

setOutputValueClass (IntWritable.class);

.setMapperClass (Map.class) ;
.setCombinerClass (Reduce.class); /* collects all values together */
conf.
conf.
conf.
FileInputFormat.setInputPaths (conf, new Path(args[0] ;
FileOutputFormat.setOutputPath (conf, new Path(args[1l])):;

setReducerClass (Reduce.class) ;
setInputFormat (TextInputFormat.class);
setOutputFormat (TextOutputFormat.class) ;

))

JobClient.runJob (conf) ;

Scalable framework: works on single-node
machine, “pseudo-distributed” (single machine,
multiple processes), or fully distributed cluster
(depending on how Hadoop installation is set up)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

[PC Summary

OF OREGON

* Lots of mechanisms
» Pipes
» Shared memory

» Sockets
» RPC

* Trade-offs

» Ease of use, functionality, flexibility, performance

* Implementation must maximize these
» Minimize copies (performance)
» Synchronous vs Asynchronous (ease of use, flexibility)

» Local vs Remote (functionality)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Summary

OF OREGON

* Process

» Execution state of a program

* Process Creation
» fork and exec

» From binary representation

* Process Description

» Necessary to manage resources and context switch

* Process Scheduling

» Process states and transitions among them

* Interprocess Communication

» Ways for processes to interact (other than normal files)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

 Next time: Threads

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

