
Computer and Information Science

Spring 2012
Prof. Kevin Butler

CIS 415:
Operating Systems

Threads

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:

‣ Processes

• Today:

‣ Threads

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Why Threads?
• Think back to processes: “a program in execution”

‣ memory address space containing code and data

‣ other resources (e.g., open file descriptors)

‣ state information (PC, register, SP) => PCB details

• Consider as two categories

‣ collection of resources (code, addr space, open files, etc)

‣ thread of execution (current state operating
on resource)

• Can think about separately

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Model

• Recall from last day: much of OS job is keeping
processes from interfering with each other

‣ thread of execution associated with own resources

‣ can’t write over process address space

• Good for isolation, bad because of context switching
required for changing threads

‣ full process swap required, OS intervention, all the state involved
in a context switch (what is involved?)

‣ some apps could contain multiple threads of execution but only
need one grouping of resources

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Advantages of Threads

• Improve Responsiveness

‣ Ideally, a thread is always ready

• Resource Sharing

‣ All the stuff is easily accessible

• Economy of Resources

‣ Thread resources are cheaper than process resources

• Utilization of Multiprocessors

‣ Get all of them running

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multi-Threaded vs. Single-Threaded

6

Regular UNIX process can be thought of as a special
case of a multithreaded process: a process that
contains just one thread

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Terminology
• Multiprogramming
‣ Run multiple processes concurrently on a single processor

‣ OS choose which process to run out of multiple

• Multiprocessing
‣ Run multiple processes on multiple processors

‣ OS manages mapping of processes to processors

• Multithreading
‣ Define multiple execution contexts in a single address space

‣ OS manages mapping of contexts (threads) to an address space

‣ OS manages mapping of threads to processor(s)

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multithreaded Applications

• Multiple threads sharing a common address space

‣ applications that:

• need to share data structures among threads

• don’t need the OS to enforce resource separation (trust amongst
the threads)

‣ not for arbitrary code or general programs

• What are examples of multi-threaded applications?

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

What’s a Thread?

• Thread of Execution on CPU

‣ Program counter

‣ Registers

• Memory

‣ Address space (process)

‣ Stack -- per thread

• I/O

‣ Share files, sockets, etc. (process)

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Working with Threads

• In a C program

‣ main() procedure defines the first thread

‣ C programs always start at main

• Create a second thread

‣ Allocate resources to maintain a second execution context in
same address space

• Think about what process fields will be necessary for a thread

‣ Supply a procedure name to start the new thread’s execution

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Threads vs. Processes

• Easier to create than a new process

• Less time to terminate a thread than a process

• Less time to switch between two threads within the
same process

• Less communication overheads

‣ Communicating between the threads of one process is simple
because the threads share everything: address space

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Which is Cheaper?
• Create new process or create new thread (in existing

process)

• Context switch between processes or threads

• Interprocess or inter-thread communication

• Sharing memory between processes or threads

• Terminate a process or terminate a thread (not last one)

12

Process creation
 method

Time (sec),
elapsed (real)

fork() 22.27 (7.99)
vfork() 3.52 (2.49)
clone() 2.97 (2.14)

Time to create
100,000 processes
(Linux 2.6 kernel,
x86-32 system)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Implications?

• 0.22 ms per fork

‣ maximum of (1000 / 0.22) = 4545.5 connections per second

‣ 0.45 billion connections per day per machine

• fine for most servers

• too slow for a few super-high-traffic front-line web services

‣ Facebook serves O(750 billion) page views per day

‣ guess ~1-20 HTTP connections per page

‣ would need 3,000 -- 60,000 machines just to handle fork(),
i.e., without doing any work for each connection!

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Thread Attributes
• Global to process:

‣ memory

‣ PID, PPID, GID, SID

‣ controlling term

‣ process credentials

‣ record locks

‣ FS information

‣ timers

‣ resource limits

‣ and more...

14

• Local to specific thread:

‣ thread ID

‣ stack

‣ signal mask

‣ thread-specific data

‣ alternate signal stack

‣ error return value

‣ scheduling policy/priority

‣ Linux-specific (e.g., CPU
affinity)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Threading Models
• Programming: Library or system call interface

‣ User-Space Threading

• Thread management support in user-space library

• Linked into your program

‣ Kernel Threading

• Thread management support in the kernel

• Invoked via system call

• Scheduling: Application or kernel scheduling

‣ May create user-level or kernel-level threads

• NOTE: CPU only runs kernel threads!

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

User-Space Threads

• Thread management support in user-space library

‣ Sets of functions for creating, invoking, and switching among
threads

• Linked into your program

‣ Thread libraries

• Examples

‣ POSIX Threads (PThreads)

‣ Win32 Threads

‣ Java Threads

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Implementing Threading

• Threads can perform operations in user mode that are
usually handled by the OS

‣ assumes cooperating threads so hardware enforcement of
separation not required

• Idea: “dispatcher” subroutine in the process is called
when a thread is ready to relinquish control to
another thread

‣ manages stack pointer, program counter

‣ switches process’s internal state among threads

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Kernel Threads
• Thread management support in kernel
‣ Sets of system calls for creating, invoking, and switching among

threads

• Supported and managed directly by the OS
‣ Thread objects in the kernel

• Nearly all OSes support a notion of threads
‣ Linux -- thread and process abstractions are mixed

‣ Solaris

‣ Mac OS X

‣ Windows XP

‣ …

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Many-to-one Thread Model

• Many user-level threads correspond to a single kernel
thread
‣ Kernel is not aware of the mapping

‣ Handled by a thread library

• How does it work?
‣ Create and execute a new thread

‣ Upon yield, switch to another thread in the same process

• Kernel is unaware

‣ Upon wait, all threads are blocked

• Kernel is unaware there are other options

• Can’t wait and run at the same time

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

One-to-one Thread Model
• One user-level thread per kernel thread
‣ A kernel thread is allocated for every user-level thread

‣ Must get the kernel to allocate resources for each new user-
level thread

• How does it work?
‣ Create new thread, including

 system call to kernel

‣ Upon yield, switch to another thread in system
• Kernel is aware

‣ Upon wait, another thread in the process may run
• Only the single kernel thread is blocked

• Kernel is aware there are other options in this process

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Many-to-many Thread Model
• A pool of user-level threads maps to a pool of kernel threads
‣ Pool sizes can be different (kernel pool is no larger)

‣ A kernel thread is pool is allocated for every user-level thread

‣ No need for the kernel to allocate resources for each new user-level
thread

• How does it work?
‣ Create new thread (may map to kernel thread

dynamically)

‣ Upon yield, switch to another thread in system

• Kernel is aware

‣ Upon wait, another thread in the process may run

• If a kernel thread is available to be scheduled to that process

• Kernel is aware of the mapping between process threads and kernel threads

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Problems solved with threads

• Imagine you are building a web server
‣ You could allocate a pool of threads, one for each client

• Thread would wait for a request, get content file, return it

‣ How would the different thread models impact this?

• Imagine you are building a web browser
‣ You could allocate a pool of threads

• Some for user interface

• Some for retrieving content

• Some for rendering content

‣ What happens if the user decided to stop the request?
‣ Mouse click on the stop button

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linux Threads

• Linux uses a one-to-one thread model

‣ Threads are calls tasks

• Linux views threads are “contexts of execution”

‣ Threads are defined separately from processes

‣ I.e., a thread is assigned an address space

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linux Threads

• Linux system call
‣ clone(int (*fn)(), void **stack, int flags,
int argc, … /*args */)

‣ Create a new thread (Linux task)

• May be created in the same address space or not

‣ Flags: Clone VM, Clone Filesystem, Clone Files, Clone Signal
Handlers

• If clone with all these flags off, what system call is clone equal
to?

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

POSIX Threads

• POSIX Threads or Pthreads is a thread API
specification

‣ Not directly an implementation

‣ Could be mapped to libraries or system calls

• Supported by Solaris and Linux

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

POSIX Threads

• phtread_create()
‣ start the thread

• pthread_self()
‣ return thread ID

• pthread_equal()
‣ for comparisons of thread

ID's

• pthread_exit()
‣ or just return from the

start function

26

• pthread_join()
‣ wait for another thread to

terminate & retrieve value from
pthread_exit()

• pthread_cancel()
‣ terminate a thread, by TID

• pthread_detach()
‣ thread is immune to join or

cancel & runs independently
until it terminates

• pthread_attr_init()
‣ thread attribute modifiers

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Concurrency with threads

• A single process handles all of the connections

‣ but, a parent thread forks (or dispatches) a new thread to
handle each connection

‣ the child thread:

• handles the new connection

• exits when the connection terminates

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

accept()

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

accept()

client
connect

29

server

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

client
pthread_create()

30

server

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

client

31

server

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

client

client
pthread_create()

32

server

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

client

client

client

client

client

client

shared
data

structures

33

server

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Implications?

• 0.0297 ms per thread create; 10x faster than process forking

‣ maximum of (1000 / 0.0297) = ~33,670 connections per second

‣ 3 billion connections per day per machine

• much, much better

• But, writing safe multithreaded code can be complicated

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Concurrent threads

• Benefits

‣ straight-line code, line processes or sequential

• still the case that much of the code is identical!

‣ parallel execution; good CPU, network utilization

• lower overhead than processes

‣ shared-memory communication is possible

• Disadvantages

‣ synchronization is complicated

‣ shared fate within a process; one rogue thread can hurt you badly

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Inter-Thread Communication
• Can you use shared memory?
‣ Already have it

‣ Just need to allocate memory in the address space

• No need for shm

• Programming to pipes provides abstraction

• Can you use message passing?
‣ Sure

‣ Would have to build infrastructure

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Thread Cancellation

• So, you want to stop a thread from executing

‣ Don’t need it anymore

• Remember the browser ‘stop’ example

• Two choices

‣ Synchronous cancellation

• Wait for the thread to reach a point where cancellation is permitted

• No such operation in Pthreads, but can create your own

‣ Asynchronous cancellation

• Terminate it now

• pthread_cancel(thread_id)

37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Signal Handling
• What’s a signal?
‣ A form of IPC

‣ Send a particular signal to another process

• Receiver’s signal handler processes signal on receipt

• Example
‣ Tell the Internet daemon (inetd) to reread its config file

‣ Send signal to inetd: kill -SIGHUP <pid>

‣ inetd’s signal handler for the SIGHUP signal re-reads the config
file

• Note: some signals cannot be handled by the receiving
process, so they cause default action (kill the process)

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Signal Handling

• Synchronous Signals

‣ Generated by the kernel for the process

‣ E.g., due to an exception -- divide by 0

• Events caused by the thread receiving the signal

• Asynchronous Signals

‣ Generated by another process

• Asynchronous signals are more difficult for
multithreading

39

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Signal Handling and Threads

• So, you send a signal to a process

‣ Which thread should it be delivered to?

• Choices

‣ Thread to which the signal applies

‣ Every thread in the process

‣ Certain threads in the process

‣ A specific signal receiving thread

• It depends…

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Signal Handling and Threads

• UNIX signal model created decades before Pthreads:
conflicts arise

• Synchronous vs. Asynchronous Cases

• Synchronous

‣ Signal is delivered to the same process that caused the signal

‣ Which thread(s) would you deliver the signal to?

• Asynchonous

‣ Signal generated by another process

‣ Which thread(s) in this case?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Thread Pools

• Problem: setup time

• Faster than setting up a process, but what is necessary?

‣ How do we improve performance?

42

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Thread Pools

• Pool of threads

‣ Create (all) at initialization time

‣ Assign task to a waiting thread

• It’s already made

‣ Use all available threads

• What about when that task is done?

‣ Suppose another request is in the queue…

‣ Should we use running thread or another thread?

43

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Reentrance and Thread-Safety
• Terms that you might hear

• Reentrant Code

‣ Code that can be run by multiple threads concurrently

• Thread-safe Libraries

‣ Library code that permits multiple threads to invoke the safe
function

• Requirements

‣ Rely only on input data

• Or some thread-specific data

‣ Must be careful about locking (later)

44

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Why not threads?

• Threads can interfere with one another

‣ Impact of more threads on caches

‣ Impact of more threads on TLB

‣ Bug in one thread...

• Executing multiple threads may slow them down

‣ Impact of single thread vs. switching among threads

• Harder to program a multithreaded program

‣ Multitasking hides context switching

‣ Multithreading introduces concurrency issues

45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary of Threads

• Threads

‣ Programming systems

‣ Multi-threaded design issues

• Useful, but not a panacea

‣ Slow down system in some cases

‣ Can be difficult to program

• Multiprogramming and multithreading are vital
concepts

46

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Scheduling

• Reminder: Assignment 1 due Thursday

• Project 1 due next Tuesday

47

