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• Last class:

‣ Processes

• Today: 

‣ Threads
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Why Threads?
• Think back to processes: “a program in execution”

‣ memory address space containing code and data

‣ other resources (e.g., open file descriptors)

‣ state information (PC, register, SP) => PCB details

• Consider as two categories

‣ collection of resources (code, addr space, open files, etc)

‣ thread of execution (current state operating
on resource)

• Can think about separately
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Process Model

• Recall from last day: much of OS job is keeping 
processes from interfering with each other

‣ thread of execution associated with own resources

‣ can’t write over process address space

• Good for isolation, bad because of context switching 
required for changing threads

‣ full process swap required, OS intervention, all the state involved 
in a context switch (what is involved?)

‣ some apps could contain multiple threads of execution but only 
need one grouping of resources
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Advantages of Threads

• Improve Responsiveness

‣ Ideally, a thread is always ready

• Resource Sharing

‣ All the stuff is easily accessible

• Economy of Resources

‣ Thread resources are cheaper than process resources

• Utilization of Multiprocessors

‣ Get all of them running
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Multi-Threaded vs. Single-Threaded
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Regular UNIX process can be thought of as a special 
case of a multithreaded process: a process that 
contains just one thread
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Terminology
• Multiprogramming
‣ Run multiple processes concurrently on a single processor

‣ OS choose which process to run out of multiple

• Multiprocessing
‣ Run multiple processes on multiple processors 

‣ OS manages mapping of processes to processors

• Multithreading
‣ Define multiple execution contexts in a single address space

‣ OS manages mapping of contexts (threads) to an address space

‣ OS manages mapping of threads to processor(s)
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Multithreaded Applications

• Multiple threads sharing a common address space

‣ applications that:

• need to share data structures among threads

• don’t need the OS to enforce resource separation (trust amongst 
the threads)

‣ not for arbitrary code or general programs

• What are examples of multi-threaded applications?
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What’s a Thread?

• Thread of Execution on CPU

‣ Program counter

‣ Registers

• Memory

‣ Address space (process)

‣ Stack -- per thread

• I/O 

‣ Share files, sockets, etc. (process)
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Working with Threads

• In a C program

‣ main() procedure defines the first thread

‣ C programs always start at main

• Create a second thread

‣ Allocate resources to maintain a second execution context in 
same address space

• Think about what process fields will be necessary for a thread

‣ Supply a procedure name to start the new thread’s execution
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Threads vs. Processes

• Easier to create than a new process

• Less time to terminate a thread than a process

• Less time to switch between two threads within the 
same process

• Less communication overheads 

‣ Communicating between the threads of one process is simple 
because the threads share everything: address space

11



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Which is Cheaper?
• Create new process or create new thread (in existing 

process)

• Context switch between processes or threads

• Interprocess or inter-thread communication

• Sharing memory between processes or threads

• Terminate a process or terminate a thread (not last one)
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Process creation
 method

Time (sec), 
elapsed (real)

fork() 22.27 (7.99)
vfork() 3.52 (2.49)
clone() 2.97 (2.14)

Time to create 
100,000 processes 
(Linux 2.6 kernel, 
x86-32 system)
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Implications?

• 0.22 ms per fork

‣ maximum of (1000 / 0.22) = 4545.5 connections per second

‣ 0.45 billion connections per day per machine

• fine for most servers

• too slow for a few super-high-traffic front-line web services

‣ Facebook serves O(750 billion) page views per day

‣ guess ~1-20 HTTP connections per page

‣ would need 3,000 -- 60,000 machines just to handle fork( ),         
i.e., without doing any work for each connection!
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Thread Attributes
• Global to process:

‣ memory

‣ PID, PPID, GID, SID

‣ controlling term

‣ process credentials

‣ record locks

‣ FS information

‣ timers

‣ resource limits

‣ and more...
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• Local to specific thread:

‣ thread ID

‣ stack

‣ signal mask

‣ thread-specific data

‣ alternate signal stack

‣ error return value

‣ scheduling policy/priority

‣ Linux-specific (e.g., CPU 
affinity)
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Threading Models
• Programming: Library or system call interface

‣ User-Space Threading

• Thread management support in user-space library

• Linked into your program

‣ Kernel Threading

• Thread management support in the kernel

• Invoked via system call

• Scheduling: Application or kernel scheduling

‣ May create user-level or kernel-level threads

• NOTE: CPU only runs kernel threads!
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User-Space Threads

• Thread management support in user-space library

‣ Sets of functions for creating, invoking, and switching among 
threads

• Linked into your program

‣ Thread libraries

• Examples

‣ POSIX Threads (PThreads) 

‣ Win32 Threads

‣ Java Threads
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Implementing Threading

• Threads can perform operations in user mode that are 
usually handled by the OS

‣ assumes cooperating threads so hardware enforcement of 
separation not required

• Idea: “dispatcher” subroutine in the process is called 
when a thread is ready to relinquish control to 
another thread

‣ manages stack pointer, program counter

‣ switches process’s internal state among threads
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Kernel Threads
• Thread management support in kernel
‣ Sets of system calls for creating, invoking, and switching among 

threads

• Supported and managed directly by the OS
‣ Thread objects in the kernel

• Nearly all OSes support a notion of threads
‣ Linux -- thread and process abstractions are mixed

‣ Solaris

‣ Mac OS X

‣ Windows XP

‣ …
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Many-to-one Thread Model

• Many user-level threads correspond to a single kernel 
thread
‣ Kernel is not aware of the mapping

‣ Handled by a thread library

• How does it work?
‣ Create and execute a new thread

‣ Upon yield, switch to another thread in the same process

• Kernel is unaware

‣ Upon wait, all threads are blocked

• Kernel is unaware there are other options 

• Can’t wait and run at the same time
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One-to-one Thread Model
• One user-level thread per kernel thread
‣ A kernel thread is allocated for every user-level thread

‣ Must get the kernel to allocate resources for each new user-
level thread

• How does it work?
‣ Create new thread, including

 system call to kernel

‣ Upon yield, switch to another thread in system
• Kernel is aware 

‣ Upon wait, another thread in the process may run
• Only the single kernel thread is blocked

• Kernel is aware there are other options in this process
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Many-to-many Thread Model
• A pool of user-level threads maps to a pool of kernel threads
‣ Pool sizes can be different (kernel pool is no larger)

‣ A kernel thread is pool is allocated for every user-level thread

‣ No need for the kernel to allocate resources for each new user-level 
thread

• How does it work?
‣ Create new thread (may map to kernel thread 

dynamically)

‣ Upon yield, switch to another thread in system

• Kernel is aware 

‣ Upon wait, another thread in the process may run

• If a kernel thread is available to be scheduled to that process 

• Kernel is aware of the mapping between process threads and kernel threads
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Problems solved with threads

• Imagine you are building a web server
‣ You could allocate a pool of threads, one for each client

• Thread would wait for a request, get content file, return it

‣ How would the different thread models impact this?

• Imagine you are building a web browser
‣ You could allocate a pool of threads

• Some for user interface

• Some for retrieving content

• Some for rendering content 

‣ What happens if the user decided to stop the request?
‣ Mouse click on the stop button
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Linux Threads

• Linux uses a one-to-one thread model

‣ Threads are calls tasks

• Linux views threads are “contexts of execution”

‣ Threads are defined separately from processes

‣ I.e., a thread is assigned an address space
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Linux Threads

• Linux system call
‣ clone(int (*fn)(), void **stack, int flags, 
int argc, … /*args */)

‣ Create a new thread (Linux task)

• May be created in the same address space or not

‣ Flags: Clone VM, Clone Filesystem, Clone Files, Clone Signal 
Handlers

• If clone with all these flags off, what system call is clone equal 
to?
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POSIX Threads

• POSIX Threads or Pthreads is a thread API 
specification

‣ Not directly an implementation

‣ Could be mapped to libraries or system calls

• Supported by Solaris and Linux
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POSIX Threads

• phtread_create()
‣ start the thread

•  pthread_self()
‣ return thread ID

• pthread_equal()
‣ for comparisons of thread 

ID's

• pthread_exit()
‣ or just return from the 

start function
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• pthread_join()
‣ wait for another thread to 

terminate & retrieve value from 
pthread_exit()

• pthread_cancel()
‣ terminate a thread, by TID

• pthread_detach()
‣ thread is immune to join or 

cancel & runs independently 
until it terminates

• pthread_attr_init()
‣ thread attribute modifiers
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Concurrency with threads

• A single process handles all of the connections

‣ but, a parent thread forks (or dispatches) a new thread to 
handle each connection

‣ the child thread:

• handles the new connection

• exits when the connection terminates

27



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

accept( )
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Graphically

accept( )

client
connect
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server
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Graphically

client
pthread_create( )
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server
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Graphically

client
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server
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Graphically

client

client
pthread_create( )
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server
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Graphically

client

client

client

client

client

client

shared
data 

structures
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Implications?

• 0.0297 ms per thread create; 10x faster than process forking

‣ maximum of (1000 / 0.0297) = ~33,670 connections per second

‣ 3 billion connections per day per machine

• much, much better

• But, writing safe multithreaded code can be complicated
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Concurrent threads

• Benefits

‣ straight-line code, line processes or sequential

• still the case that much of the code is identical!

‣ parallel execution; good CPU, network utilization

• lower overhead than processes

‣ shared-memory communication is possible

• Disadvantages

‣ synchronization is complicated

‣ shared fate within a process; one rogue thread can hurt you badly
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Inter-Thread Communication
• Can you use shared memory?
‣ Already have it

‣ Just need to allocate memory in the address space

• No need for shm

• Programming to pipes provides abstraction

• Can you use message passing?
‣ Sure

‣ Would have to build infrastructure
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Thread Cancellation

• So, you want to stop a thread from executing

‣ Don’t need it anymore

• Remember the browser ‘stop’ example

• Two choices

‣ Synchronous cancellation

• Wait for the thread to reach a point where cancellation is permitted

• No such operation in Pthreads, but can create your own

‣ Asynchronous cancellation

• Terminate it now

• pthread_cancel(thread_id)
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Signal Handling
• What’s a signal?
‣ A form of IPC

‣ Send a particular signal to another process

• Receiver’s signal handler processes signal on receipt

• Example
‣ Tell the Internet daemon (inetd) to reread its config file

‣ Send signal to inetd: kill -SIGHUP <pid>

‣ inetd’s signal handler for the SIGHUP signal re-reads the config 
file

• Note: some signals cannot be handled by the receiving 
process, so they cause default action (kill the process)
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Signal Handling

• Synchronous Signals

‣ Generated by the kernel for the process

‣ E.g., due to an exception -- divide by 0

• Events caused by the thread receiving the signal

• Asynchronous Signals

‣ Generated by another process

• Asynchronous signals are more difficult for 
multithreading

39



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Signal Handling and Threads

• So, you send a signal to a process

‣ Which thread should it be delivered to?

• Choices

‣ Thread to which the signal applies

‣ Every thread in the process

‣ Certain threads in the process

‣ A specific signal receiving thread

• It depends…
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Signal Handling and Threads

• UNIX signal model created decades before Pthreads: 
conflicts arise

• Synchronous vs. Asynchronous Cases

• Synchronous

‣ Signal is delivered to the same process that caused the signal

‣ Which thread(s) would you deliver the signal to?

• Asynchonous

‣ Signal generated by another process

‣ Which thread(s) in this case?
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Thread Pools

• Problem: setup time

• Faster than setting up a process, but what is necessary?

‣ How do we improve performance?
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Thread Pools

• Pool of threads

‣ Create (all) at initialization time

‣ Assign task to a waiting thread

• It’s already made

‣ Use all available threads

• What about when that task is done?

‣ Suppose another request is in the queue…

‣ Should we use running thread or another thread?
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Reentrance and Thread-Safety
• Terms that you might hear

• Reentrant Code

‣ Code that can be run by multiple threads concurrently

• Thread-safe Libraries

‣ Library code that permits multiple threads to invoke the safe 
function

• Requirements

‣ Rely only on input data

• Or some thread-specific data

‣ Must be careful about locking (later)
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Why not threads?

• Threads can interfere with one another 

‣ Impact of more threads on caches

‣ Impact of more threads on TLB

‣ Bug in one thread...

• Executing multiple threads may slow them down

‣ Impact of single thread vs. switching among threads

• Harder to program a multithreaded program

‣ Multitasking hides context switching

‣ Multithreading introduces concurrency issues
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Summary of Threads

• Threads

‣ Programming systems

‣ Multi-threaded design issues

• Useful, but not a panacea

‣ Slow down system in some cases

‣ Can be difficult to program

• Multiprogramming and multithreading are vital 
concepts
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• Next time: Scheduling

• Reminder: Assignment 1 due Thursday

• Project 1 due next Tuesday
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