
Computer and Information Science

Spring 2012
Prof. Kevin Butler

CIS 415:
Operating Systems

Scheduling

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:

‣ Threads

• Today:

‣ Intro to Scheduling

• Remember: Project 1 due today!

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Resource Allocation

• In a multiprogramming system, we need to share
resources among the running processes

‣ What are the types of OS resources?

• Question: Which process gets access to which
resources?

‣ To maximize performance

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Resource Types

• Memory: Allocate portion of finite resource
‣ Virtual memory tries to make this appear infinite

‣ Physical resources are limited

• I/O: Allocate portion of finite resource and time with
resource
‣ Store information on disk

‣ A time slot to store that information

• CPU: Allocate time slot with resource
‣ A time slot to run instructions

• We will focus on CPU scheduling for now
4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Types of Scheduling
• Long-term (admission) scheduling: determining whether

to add to the pool of processes to be executed

• Medium-term scheduling: determining whether to add
to the number of processes partially or fully in
memory

• Short-term scheduling: determining which process will
be executed by the processor

• I/O scheduling: determining which process’s pending
I/O request will be handled by an available I/O device

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Scheduling Examples

• Single process view

‣ GUI request

• Click on the mouse

‣ Scientific computation

• Long-running, but want to complete ASAP

• System view

‣ Get as many tasks done as quickly as possible

‣ Minimize waiting time for processes

‣ Utilize CPU fully

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Scheduling

Running

Blocked

Ready New process
creation

Dispatched (CPU assigned)

Pre-empted (CPU yanked)

Wait
For

Event
(e.g. I/O)

Event
Occurred

Process
Terminates

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Problem

• Choose the ready/running process to run at any time

‣ Maximize “performance”

• Model/estimate “performance” as a function

‣ System performance of scheduling each process

• f(process) = y

‣ What are some choices for f(process)?

• Choose the process with the best y

‣ Estimating overall performance is intractable

• E.g., scheduling so all tasks are completed as soon as possible is NP-
complete, then add in pre-emption...

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

When Scheduling Occurs

• CPU scheduling decisions may take place when a
process:

‣ 1.	
 Switches from running to waiting state

‣ 2.	
 Switches from running to ready state

‣ 3.	
 Switches from waiting to ready

‣ 4. Terminates

• Scheduling for events 1 and 4 do not preempt a
process

‣ Process volunteers to give up the CPU

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Preemption

• Can we reschedule a process that is actively running?

‣ If so, we have a preemptive scheduler

‣ If not, we have a non-preemptive scheduler

• Suppose a process becomes ready

‣ E.g., new process is created or it is no longer waiting

• It may be better to schedule this process

‣ So, we preempt the running process

• In what ways could the new process be better?

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Bursts

• A process runs in CPU and
I/O Bursts

‣ Run instructions (CPU Burst)

‣ Wait for I/O (I/O Burst)

• Scheduling is aided by knowing the
length of these bursts

‣ More later…

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Burst Duration

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Scheduling Examples

• Single process view

‣ GUI request

• Click on the mouse

‣ Scientific computation

• Long-running, but want to complete ASAP

• System view

‣ Get as many tasks done as quickly as possible

‣ Minimize waiting time for processes

‣ Utilize CPU fully

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Dispatcher

• Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

‣ Switching context

‣ Switching to user mode

‣ Jumping to the proper location in the user program to
restart that program

• Dispatch latency – time it takes for the dispatcher to
stop one process and start another running

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Criteria
• Utilization/efficiency: keep the CPU busy 100% of the time

with useful work

• Throughput: maximize the number of jobs processed
per hour.

• Turnaround time: from the time of submission to the time
of completion.

• Waiting time: Sum of time spent (in Ready queue) waiting
to be scheduled on the CPU.

• Response Time: time from submission until the first
response is produced (mainly for interactive jobs)

• Fairness: make sure each process gets a fair share
of the CPU

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Algorithms

• Some may seem intuitively better than others

• But a lot has to do with the type of offered workload
to the processor

• Best scheduling comes with best context of the tasks
to be completed

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

FCFS

• First-Come, First-Served (FCFS)

‣ Serve the jobs in the order they arrive.

‣ Non-preemptive

‣ Simple and easy to implement: When a process is ready, add
it to tail of ready queue, and serve the ready queue in FCFS
order.

‣ Very fair: No process is starved out, and the service order is
immune to job size, etc.

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

FCFS

	
 	
 Process	
 Burst Time	

	
 	
 P1	
 24

	
 	
 P2 	
 3

	
 	
 P3	
 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Reducing Waiting Time
Suppose that the processes arrive in the order

	
 	
 P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect: short process behind long process

P1P3P2

63 300

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shortest-Job-First (SJF)
• Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with the
shortest time

• Two schemes:
‣ Non-preemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst

‣ Preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process, preempt.
This scheme is known as the Shortest-Remaining-Time-First
(SRTF)

• SJF is optimal – gives minimum average waiting time for a
given set of processes

‣ So we always use it, right?
20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

	
 	
 Process	
 Arrival Time	
 Burst Time

	
 	
 P1	
 0.0	
 7

	
 	
 P2	
 2.0	
 4

	
 	
 P3	
 4.0	
 1

	
 	
 P4	
 5.0	
 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Preemptive SJF

	
 	
 Process	
 Arrival Time	
 Burst Time

	
 	
 P1	
 0.0	
 7

	
 	
 P2	
 2.0	
 4

	
 	
 P3	
 4.0	
 1

	
 	
 P4	
 5.0	
 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Determining Next CPU Burst

• Can only estimate the length

• Can be done by using the length of previous CPU
bursts, using exponential averaging

€

τ n+1 =α tn + 1−α()τ n .

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Determining Next CPU Burst

• If α=0, no weighting to recent history (e.g., current conditions are
transient)

• If α=1, no weighting to old history

• Typically, choose α=1/2 which gives equal weighting to recent
and past history

€

1. tn = actual length of nth CPU burst
2. τ n+1 = predicted value for the next CPU burst
3. α, 0 ≤α ≤1
4. Define :

€

τ n+1 =α tn + 1−α()τ n .

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Exponential Averaging

• If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn-1 + …

 +(1 - α)j α tn-j + …

 +(1 - α)n +1 τ0

• Since both α and (1 - α) are less than or equal to 1,
each successive term has less weight than its
predecessor

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Burst Prediction

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Algorithms

• First-come, First-serve (FCFS)

‣ Non-preemptive

‣ Does not account for waiting time (or much else)

• Convoy problem

• Shortest Job First

‣ May be preemptive

‣ Optimal for minimizing waiting time (how?)

• Lots more… And what do real systems use?

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Priority Scheduling

• Each process is given a certain priority “value”.

• Always schedule the process with the highest priority.

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Duration(s) Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Gantt Chart for Priority Scheduling

P2

0 1

P5

6

P1

16

P3

18

P4

19

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Priorities

• Note that FCFS and SJF are specialized versions of
Priority Scheduling

‣ i.e. there is a way of assigning priorities to the processes so
that Priority Scheduling would result in FCFS/SJF.

• What would examples of those priority functions be?

30

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round Robin (RR)
• Each process gets a small unit of CPU time (time

quantum)

‣ Usually 10-100 milliseconds

‣ After this time has elapsed, the process is preempted and
added to the end of the ready queue

• Approach

‣ If there are n processes in the ready queue and the time
quantum is q

‣ Then each process gets 1/n of the CPU time

‣ In chunks of at most q time units at once.

‣ No process waits more than (n-1)q time units
31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round Robin

Arrival
Time (s)

Job length (s)

P1 0 24

P2 0 3
P3 0 7

Time Quantum = 4 s

P1

0 4

P2

7

P3

11

P1

15

P3

18

P1

22

P1

26

P1

30

P1

34

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

RR Time Quantum

• Round robin is virtually sharing the CPU between the
processes giving each process the illusion that it is
running in isolation (at 1/n-th the CPU speed).

• Smaller the time quantum, the more realistic the
illusion (note that when time quantum is of the order
of job size, it degenerates to FCFS).

• But what is the drawback when time quantum gets
smaller?

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

RR Time Quantum

• For the considered example, if time quantum size
drops to 2s from 4s, the number of context switches
increases to ????

• But context switches are not free!

‣ Saving/restoring registers

‣ Switching address spaces

‣ Indirect costs (cache pollution)

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Desirables
• SJF

‣ Minimize waiting time

• Requires estimate of CPU bursts

• Round robin

‣ Share CPU via time quanta

• If burst turns out to be “too long”

• Priorities

‣ Some processes are more important

‣ Priorities enable composition of “importance” factors

• No single best approach -- now what?
35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round Robin with Priority

• Have a ready queue for each priority level.

• Always service the non-null queue at the highest
priority level.

• Within each queue, you perform round-robin
scheduling between those processes.

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round-Robin with Priority

Pr
io

rit
y

Le
ve

ls

37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

What is the problem?

• With fixed priorities, processes lower in the priority
level can get starved out!

• In general, you employ a mechanism to “age” the
priority of processes.

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multilevel Queue
• Ready queue is partitioned into separate queues:

foreground (interactive) & background (batch)

• Each queue has its own scheduling algorithm,
foreground – RR & background – FCFS

• Scheduling must be done between the queues.

‣ Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

‣ Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

‣ 20% to background in FCFS

39

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by the
following parameters:

‣ number of queues

‣ scheduling algorithms for each queue

‣ method used to determine when to upgrade a process

‣ method used to determine when to demote a process

‣ method used to determine which queue a process will
enter when that process needs service

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multilevel Feedback Queue
• Three queues:

‣ Q0 – RR with time quantum 8 milliseconds

‣ Q1 – RR time quantum 16 milliseconds

‣ Q2 – FCFS

• Scheduling

‣ A new job enters queue Q0 which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q1.

‣ At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q2.

41

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multilevel Feedback Queues

42

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Performance for Schedulers

• Queueing Theory Analysis - uses well-established
mathematical models and techniques.

• Simulation - create a model of the system and
simulate its performance using simulation software.

• Empirical Experiments - implement and test the
algorithms in a real system.

43

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Queuing Theory Analysis
Single-server Queue:

44

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Queuing Theory Analysis
• Inputs:

‣ arrival rate - from a probability distribution (usually Poisson
which implies random arrivals)

‣ service time - from a probability distribution (often
exponential)

‣ scheduling discipline/algorithm

45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Queuing Theory Analysis

• Outputs:

‣ Items waiting

‣ Waiting time

‣ Items queued

‣ Queuing time

46

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Queuing Theory Analysis
Single-server Queue:

47

Little’s Formula: n = λ W (n = queue length)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Simulation Analysis

• Discrete-event Simulation

‣ Often uses models similar to queueing analysis

‣ More detailed or more realistic parameters (e.g. trace
driven)

‣ Simulates events step by step and gathers statistics rather
than using mathematical formulas

48

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Empirical Experiments

• Run experiments on live system

• Properties:

‣ Costly and time-consuming

‣ Sometimes not possible

‣ More realistic

49

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Traditional UNIX Scheduling

• Multilevel feedback queues

• 128 priorities possible (-64 to +63)

• 1 Round Robin queue per priority

• Every scheduling event the scheduler picks the
highest priority (lowest number) non-empty queue
and runs jobs in round-robin

50

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

UNIX Process Scheduling
• Negative numbers reserved for processes waiting in kernel

mode (just woken up by interrupt handlers) (why do they
have a higher priority?)

• Time quantum = 1/10 sec (empirically found to be the
longest quantum that could be used without loss of the
desired response for interactive jobs such as editors)

‣ short time quantum means better interactive response

‣ long time quantum means higher overall system throughput since
less context switch overhead and less processor cache flush.

• Priority dynamically adjusted to reflect

‣ resource requirement (e.g., blocked awaiting an event)

‣ resource consumption (e.g., CPU time)

51

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linux Scheduler
• Kernel 2.4 and earlier: essentially the same as the

traditional UNIX scheduler

• Kernel 2.6: O(1) scheduler

‣ time to select process is constant regardless of system load
or the number of processors

‣ separate queue for each priority level

‣ CPU affinity (keeps processes on same CPU)

• More recently (kernel 2.6.23 and up): CFS

‣ Completely fair scheduler (runs O(log N))

• uses red-black trees rather than runqueues

52

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linux Scheduling
• Two algorithms: time-sharing and real-time
• Time-sharing (still abstracted)
‣ Two queues: active and expired

‣ In active, until you use your entire time slice (quantum), then expired
• Once in expired, Wait for all others to finish (fairness)

‣ Priority recalculation -- based on waiting vs. running time
• From 0-10 milliseconds

• Add waiting time to value, subtract running time

• Adjust the static priority

• Real-time
‣ Soft real-time

‣ Posix.1b compliant – two classes
• FCFS and RR; Highest priority process always runs first

53

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Time-Slice length

54

The Relationship Between Priorities
and Time-Slice length

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Priorities

55

List of Tasks Indexed
According to Priorities

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• CPU Scheduling

‣ Algorithms

‣ Combination of algorithms

• Multi-level Feedback Queues

• Scheduling Systems

‣ UNIX

‣ Linux

56

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Synchronization

57

