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• Last class:

‣ Threads

• Today: 

‣ Intro to Scheduling

• Remember: Project 1 due today!
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Resource Allocation

• In a multiprogramming system, we need to share 
resources among the running processes

‣ What are the types of OS resources?

• Question: Which process gets access to which 
resources?

‣ To maximize performance
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Resource Types

• Memory: Allocate portion of finite resource
‣ Virtual memory tries to make this appear infinite

‣ Physical resources are limited 

• I/O: Allocate portion of finite resource and time with 
resource
‣ Store information on disk

‣ A time slot to store that information

• CPU: Allocate time slot with resource
‣ A time slot to run instructions

• We will focus on CPU scheduling for now
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Types of Scheduling
• Long-term (admission) scheduling: determining whether 

to add to the pool of processes to be executed

• Medium-term scheduling: determining whether to add 
to the number of processes partially or fully in 
memory

• Short-term scheduling: determining which process will 
be executed by the processor

• I/O scheduling: determining which process’s pending 
I/O request will be handled by an available I/O device
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CPU Scheduling Examples

• Single process view

‣ GUI request

• Click on the mouse

‣ Scientific computation

• Long-running, but want to complete ASAP

• System view

‣ Get as many tasks done as quickly as possible

‣ Minimize waiting time for processes

‣ Utilize CPU fully

6



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Scheduling

Running

Blocked

Ready New process
creation

Dispatched (CPU assigned)

Pre-empted (CPU yanked)

Wait
For

Event
(e.g. I/O)

Event
Occurred

Process
Terminates
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Scheduling Problem

• Choose the ready/running process to run at any time

‣ Maximize “performance”

• Model/estimate “performance” as a function

‣ System performance of scheduling each process

• f(process) = y

‣ What are some choices for f(process)?

• Choose the process with the best y

‣ Estimating overall performance is intractable

• E.g., scheduling so all tasks are completed as soon as possible is NP-
complete, then add in pre-emption...
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When Scheduling Occurs

• CPU scheduling decisions may take place when a 
process:

‣ 1.	
 Switches from running to waiting state

‣ 2.	
 Switches from running to ready state

‣ 3.	
 Switches from waiting to ready

‣ 4.  Terminates

• Scheduling for events 1 and 4 do not preempt a 
process

‣ Process volunteers to give up the CPU
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Preemption

• Can we reschedule a process that is actively running?

‣ If so, we have a preemptive scheduler

‣ If not, we have a non-preemptive scheduler

•  Suppose a process becomes ready

‣ E.g., new process is created or it is no longer waiting

• It may be better to schedule this process

‣ So, we preempt the running process

• In what ways could the new process be better?
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Bursts

• A process runs in CPU and 
I/O Bursts

‣ Run instructions (CPU Burst)

‣ Wait for I/O (I/O Burst)

• Scheduling is aided by knowing the 
length of these bursts

‣ More later…

11



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Burst Duration
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CPU Scheduling Examples

• Single process view

‣ GUI request

• Click on the mouse

‣ Scientific computation

• Long-running, but want to complete ASAP

• System view

‣ Get as many tasks done as quickly as possible

‣ Minimize waiting time for processes

‣ Utilize CPU fully
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Dispatcher

• Dispatcher module gives control of the CPU to the 
process selected by the short-term scheduler; this 
involves:

‣ Switching context

‣ Switching to user mode

‣ Jumping to the proper location in the user program to 
restart that program

• Dispatch latency – time it takes for the dispatcher to 
stop one process and start another running
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Scheduling Criteria
• Utilization/efficiency: keep the CPU busy 100% of the time 

with useful work

• Throughput: maximize the number of jobs processed 
per hour.

• Turnaround time: from the time of submission to the time 
of completion.

• Waiting time: Sum of time spent (in Ready queue) waiting 
to be scheduled on the CPU.

• Response Time: time from submission until the first 
response is produced (mainly for interactive jobs)

• Fairness: make sure each process gets a fair share 
of the CPU
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Scheduling Algorithms

• Some may seem intuitively better than others

• But a lot has to do with the type of offered workload 
to the processor

• Best scheduling comes with best context of the tasks 
to be completed

16



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

FCFS

• First-Come, First-Served (FCFS)

‣ Serve the jobs in the order they arrive.

‣ Non-preemptive

‣ Simple and easy to implement: When a process is ready, add 
it to tail of ready queue, and serve the ready queue in FCFS 
order.

‣ Very fair: No process is starved out, and the service order is 
immune to job size, etc.
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FCFS

	
 	
 Process	
 Burst Time	


	
 	
 P1	
 24

	
 	
  P2 	
 3

	
 	
  P3	
  3 

• Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

• Waiting time for P1  = 0; P2  = 24; P3 = 27

• Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300
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Reducing Waiting Time
Suppose that the processes arrive in the order

	
 	
  P2 , P3 , P1 

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time:   (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect: short process behind long process

P1P3P2

63 300
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Shortest-Job-First (SJF)
• Associate with each process the length of its next CPU 

burst.  Use these lengths to schedule the process with the 
shortest time

• Two schemes: 
‣ Non-preemptive – once CPU given to the process it cannot 

be preempted until completes its CPU burst

‣ Preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, preempt.  
This scheme is known as the Shortest-Remaining-Time-First 
(SRTF)

• SJF is optimal – gives minimum average waiting time for a 
given set of processes

‣ So we always use it, right?
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 Process	
 Arrival Time	
 Burst Time

	
 	
 P1	
 0.0	
 7

	
 	
  P2	
 2.0	
 4

	
 	
  P3	
 4.0	
 1

	
 	
  P4	
 5.0	
 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4  = 4

Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12
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Preemptive SJF

	
 	
 Process	
 Arrival Time	
 Burst Time

	
 	
 P1	
 0.0	
 7

	
 	
  P2	
 2.0	
 4

	
 	
  P3	
 4.0	
 1

	
 	
  P4	
 5.0	
 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16
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Determining Next CPU Burst

• Can only estimate the length

• Can be done by using the length of previous CPU 
bursts, using exponential averaging

€ 

τ n+1 =α tn + 1−α( )τ n .
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Determining Next CPU Burst

• If α=0, no weighting to recent history (e.g., current conditions are 
transient)

• If α=1, no weighting to old history

• Typically, choose α=1/2 which gives equal weighting to recent 
and past history

€ 

1.  tn = actual  length of nth  CPU  burst
2.  τ n+1 =  predicted value for the next CPU  burst
3.  α,  0 ≤α ≤1
4.  Define :

€ 

τ n+1 =α tn + 1−α( )τ n .

24



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Exponential Averaging

• If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn-1 + …

            +(1 - α )j α tn-j + …

            +(1 - α )n +1 τ0

• Since both α and (1 - α) are less than or equal to 1, 
each successive term has less weight than its 
predecessor
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CPU Burst Prediction
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Scheduling Algorithms

• First-come, First-serve (FCFS)

‣ Non-preemptive 

‣ Does not account for waiting time (or much else)

• Convoy problem

• Shortest Job First

‣ May be preemptive

‣ Optimal for minimizing waiting time (how?)

• Lots more… And what do real systems use?
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Priority Scheduling

• Each process is given a certain priority “value”.

• Always schedule the process with the highest priority.
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Duration(s) Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Gantt Chart for Priority Scheduling

P2

0 1

P5

6

P1

16

P3

18

P4

19
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Priorities

• Note that FCFS and SJF are specialized versions of 
Priority Scheduling

‣ i.e. there is a way of assigning priorities to the processes so 
that Priority Scheduling would result in FCFS/SJF.

• What would examples of those priority functions be?
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Round Robin (RR)
• Each process gets a small unit of CPU time (time 

quantum)

‣ Usually 10-100 milliseconds

‣ After this time has elapsed, the process is preempted and 
added to the end of the ready queue

• Approach

‣ If there are n processes in the ready queue and the time 
quantum is q

‣ Then each process gets 1/n of the CPU time

‣ In chunks of at most q time units at once.  

‣ No process waits more than (n-1)q time units
31
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Round Robin

Arrival
Time (s)

Job length (s)

P1 0 24

P2 0 3
P3 0 7

Time Quantum = 4 s

P1

0 4

P2

7

P3

11

P1

15

P3

18

P1

22

P1

26

P1

30

P1

34
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RR Time Quantum

• Round robin is virtually sharing the CPU between the 
processes giving each process the illusion that it is 
running in isolation (at 1/n-th the CPU speed).

• Smaller the time quantum, the more realistic the 
illusion (note that when time quantum is of the order 
of job size, it degenerates to FCFS).

• But what is the drawback when time quantum gets 
smaller?

33



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

RR Time Quantum

• For the considered example, if time quantum size 
drops to 2s from 4s, the number of context switches 
increases to ????

• But context switches are not free!

‣ Saving/restoring registers

‣ Switching address spaces

‣ Indirect costs (cache pollution)
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Scheduling Desirables
• SJF

‣ Minimize waiting time

• Requires estimate of CPU bursts

• Round robin

‣ Share CPU via time quanta

• If burst turns out to be “too long”

• Priorities

‣ Some processes are more important

‣ Priorities enable composition of “importance” factors

• No single best approach -- now what?
35
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Round Robin with Priority

• Have a ready queue for each priority level.

• Always service the non-null queue at the highest 
priority level.

• Within each queue, you perform round-robin 
scheduling between those processes.
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Round-Robin with Priority
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y 
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What is the problem?

• With fixed priorities, processes lower in the priority 
level can get starved out!

• In general, you employ a mechanism to “age” the 
priority of processes.
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Multilevel Queue
• Ready queue is partitioned into separate queues:

foreground (interactive) & background (batch)

• Each queue has its own scheduling algorithm, 
foreground – RR & background – FCFS

• Scheduling must be done between the queues.

‣ Fixed priority scheduling; (i.e., serve all from foreground 
then from background).  Possibility of starvation.

‣ Time slice – each queue gets a certain amount of CPU time 
which it can schedule amongst its processes; i.e., 80% to 
foreground in RR

‣ 20% to background in FCFS 
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Multilevel Feedback Queue

• A process can move between the various queues; 
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by the 
following parameters:

‣ number of queues

‣ scheduling algorithms for each queue

‣ method used to determine when to upgrade a process

‣ method used to determine when to demote a process

‣ method used to determine which queue a process will 
enter when that process needs service
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Multilevel Feedback Queue
• Three queues: 

‣ Q0 – RR with time quantum 8 milliseconds

‣ Q1 – RR time quantum 16 milliseconds

‣ Q2 – FCFS

• Scheduling

‣ A new job enters queue Q0 which is served FCFS. When it 
gains CPU, job receives 8 milliseconds.  If it does not finish 
in 8 milliseconds, job is moved to queue Q1.

‣ At Q1 job is again served FCFS and receives 16 additional 
milliseconds.  If it still does not complete, it is preempted 
and moved to queue Q2.
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Multilevel Feedback Queues

42



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Performance for Schedulers

• Queueing Theory Analysis - uses well-established 
mathematical models and techniques. 

• Simulation - create a model of the system and 
simulate its performance using simulation software. 

• Empirical Experiments - implement and test the 
algorithms in a real system. 
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Queuing Theory Analysis
Single-server Queue:
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Queuing Theory Analysis
• Inputs: 

‣ arrival rate - from a probability distribution (usually Poisson 
which implies random arrivals) 

‣ service time - from a probability distribution (often 
exponential) 

‣ scheduling discipline/algorithm 
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Queuing Theory Analysis

• Outputs: 

‣ Items waiting 

‣ Waiting time 

‣ Items queued 

‣ Queuing time 
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Queuing Theory Analysis
Single-server Queue:

47
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Simulation Analysis

• Discrete-event Simulation 

‣ Often uses models similar to queueing analysis 

‣ More detailed or more realistic parameters (e.g. trace 
driven) 

‣ Simulates events step by step and gathers statistics rather 
than using mathematical formulas 
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Empirical Experiments

• Run experiments on live system

• Properties:

‣ Costly and time-consuming 

‣ Sometimes not possible 

‣ More realistic 
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Traditional UNIX Scheduling 

• Multilevel feedback queues 

• 128  priorities possible (-64 to +63) 

• 1 Round Robin queue per priority 

• Every scheduling event the scheduler picks the 
highest priority (lowest number) non-empty queue 
and runs jobs in round-robin 
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UNIX Process Scheduling
• Negative numbers reserved for processes waiting in kernel 

mode (just woken up by interrupt handlers) (why do they 
have a higher priority?)

• Time quantum = 1/10 sec (empirically found to be the 
longest quantum that could be used without loss of the 
desired response for interactive jobs such as editors)

‣ short time quantum means better interactive response

‣ long time quantum means higher overall system throughput since 
less context switch overhead and less processor cache flush.

• Priority dynamically adjusted to reflect

‣  resource requirement (e.g., blocked awaiting an event)

‣  resource consumption (e.g., CPU time)
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Linux Scheduler
• Kernel 2.4 and earlier: essentially the same as the 

traditional UNIX scheduler

• Kernel 2.6: O(1) scheduler

‣ time to select process is constant regardless of system load 
or the number of processors

‣ separate queue for each priority level

‣ CPU affinity (keeps processes on same CPU)

• More recently (kernel 2.6.23 and up): CFS

‣ Completely fair scheduler (runs O(log N))

• uses red-black trees rather than runqueues

52



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linux Scheduling
• Two algorithms: time-sharing and real-time
• Time-sharing (still abstracted)
‣ Two queues: active and expired

‣ In active, until you use your entire time slice (quantum), then expired
• Once in expired, Wait for all others to finish (fairness)

‣ Priority recalculation -- based on waiting vs. running time
• From 0-10 milliseconds

• Add waiting time to value, subtract running time

• Adjust the static priority

• Real-time
‣ Soft real-time

‣ Posix.1b compliant – two classes
• FCFS and RR; Highest priority process always runs first

53



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Time-Slice length

54

The Relationship Between Priorities 
and Time-Slice length
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Priorities

55

List of Tasks Indexed 
According to Priorities
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Summary

• CPU Scheduling

‣ Algorithms

‣ Combination of algorithms

• Multi-level Feedback Queues

• Scheduling Systems

‣ UNIX

‣ Linux
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• Next time: Synchronization
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