UNIVERSITY OF OREGON

O

CIS 415:

Operating Systems
Scheduling

Spring 2012
Prof. Kevin Butler

O

UNIVERSITY
OF OREGON

* |Last class:
» Threads

* Today:

» Intro to Scheduling

* Remember: Project | due today!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 2

O

Resource Allocation

OF OREGON

In 2 multiprogramming system, we need to share
resources among the running processes

» What are the types of OS resources?

Question:Which process gets access to which
resources!

» To maximize performance

{3
I DON'T HAVE ENOUGH $ ISNT THAT LIKE

RESOCURCES TO DO MY 3 AYING. "HOW NOW. S 7 YOU THINK THINGS ‘
Il y0oBs S — 1z ggwf‘) COLJ"? s <], CANT GET WORSE. &
: — 3 8] | BUT THEY CAN. . /
— Q;: f ~ ,-.‘_\ A A .~ b J
- ,
T X > AR
- s —
218—: *V : 3
: % ‘ &4 . !‘, /| -yl —
IS

© Scott Adams, Inc/Dist, by UFS, Inc,

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 3

O

Resource lypes

OF OREGON

* Memory:Allocate portion of finite resource
» Virtual memory tries to make this appear infinite

» Physical resources are limited

» |/O:Allocate portion of finite resource and time with
resource

» Store information on disk
» A time slot to store that information
« CPU:Allocate time slot with resource

» A time slot to run instructions

* We will focus on CPU scheduling for now

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 4

* Long-term (admission) scheduling: determining whether
to add to the pool of processes to be executed

* Medium-term scheduling: determining whether to add
to the number of processes partially or fully in
memory

* Short-term scheduling: determining which process will
be executed by the processor

* |/O scheduling: determining which process’s pending
/O request will be handled by an available I/O device

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

CPU Scheduling Examples

OF OREGON

* Single process view

» GUI request

* Click on the mouse
» Scientific computation
* Long-running, but want to complete ASAP
* System view
» Get as many tasks done as quickly as possible

» Minimize waiting time for processes

» Utilize CPU fully

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 6

O

Process Scheduling

OF OREGON

Dispatched (CPU assigned)

<Pr0cess Running ezey New process
. creation
Terminates Pre-empted (CPU yanked)
V|\:/2Irt Event
Event Occurred
(e.g.1/0)
Blocked

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Scheduling Problem

OF OREGON

* Choose the ready/running process to run at any time

» Maximize “performance”

* Model/estimate “performance” as a function
» System performance of scheduling each process
* f(process) =y
» What are some choices for f(process)?
* Choose the process with the best y

» Estimating overall performance is intractable

* E.g., scheduling so all tasks are completed as soon as possible is NP-
complete, then add in pre-emption...

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 8

When Scheduling Occurs o

OF OREGON

* CPU scheduling decisions may take place when a
process:

» |. Switches from running to waiting state
» 2. Switches from running to ready state
» 3. Switches from waiting to ready

» 4. Terminates

* Scheduling for events | and 4 do not preempt a
process

» Process volunteers to give up the CPU

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab 9

O

Preemption

OF OREGON

» Can we reschedule a process that is actively running?
» If so, we have a preemptive scheduler

» If not, we have a non-preemptive scheduler

* Suppose a process becomes ready

» E.g.,new process is created or it is no longer waiting

* |t may be better to schedule this process

» So, we preempt the running process

* |In what ways could the new process be better!?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

BUrsts

* A process runs in CPU and
/O Bursts

» Run instructions (CPU Burst)
» Wait for /O (I/O Burst)

* Scheduling is aided by knowing the
length of these bursts

» More later...

O

UNIVERSITY
OF OREGON

load store
add store
read from file

I wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

A

<

> CPU burs

> 1/O burst

j CPU burs

> 1/O burst

> CPU burs

> 1/O burst

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Burst Duration

160 |

140 -

120 |

-b

o

()
1

frequency

60 “
40

20

1 |

1

16 24
burst duration (milliseconds)

32

40

O

UNIVERSITY
OF OREGON

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

CPU Scheduling Examples

OF OREGON

* Single process view

» GUI request

* Click on the mouse
» Scientific computation
* Long-running, but want to complete ASAP
* System view
» Get as many tasks done as quickly as possible

» Minimize waiting time for processes

» Utilize CPU fully

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Dispatcher

OF OREGON

* Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

» Switching context
» Switching to user mode

» Jumping to the proper location in the user program to
restart that program

* Dispatch latency — time it takes for the dispatcher to
stop one process and start another running

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Scheduling Criteria

OF OREGON

* Utilization/efficiency: keep the CPU busy 100% of the time
with useful work

* Throughput: maximize the number of jobs processed
per hour.

* Turnaround time: from the time of submission to the time
of completion.

* Waiting time: Sum of time spent (in Ready queue) waiting
to be scheduled on the CPU.

* Response Time: time from submission until the first
response is produced (mainly for interactive jobs)

* Fairness: make sure each process gets a fair share
of the CPU

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Scheduling Algorithms

OF OREGON

* Some may seem intuitively better than others

* But a lot has to do with the type of offered workload
to the processor

» Best scheduling comes with best context of the tasks
to be completed

S S S S R LR RN

R R \\\\\\\\\\\\\\ NN
X 2

—

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

* First-Come, First-Served (FCFS)

» Serve the jobs in the order they arrive.

» Non-preemptive

» Simple and easy to implement:When a process is ready, add

it to tail of ready queue, and serve the ready queue in FCFS
order.

» Very fair: No process is starved out, and the service order is
immune to job size, etc.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Process Burst Time
P, 24
P, 3
P, 3

e Suppose that the processes arrive in the order: P, ,P,,P;
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

 Waiting time for P, = 0;P, =24;P;,=127
* Average waiting time: (0 +24 +27)/3=17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Reducing Waiting | ime

Suppose that the processes arrive in the order

P, ,P;,P,

e The Gantt chart for the schedule is:

P, Py P,

» Waiting time for P, = 6;P, = 0.P; =3
* Average waiting time: (6 +0 + 3)/3 =3
* Much better than previous case

* Convoy effect: short process behind long process

30

O

UNIVERSITY
OF OREGON

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Shortest-Job-First (S)F)

OF OREGON

* Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the

shortest time

 Two schemes:

» Non-preemptive — once CPU given to the process it cannot
be preempted until completes its CPU burst

» Preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process, preempt.
This scheme is known as the Shortest-Remaining-Time-First

(SRTF)

* SJF is optimal — gives minimum average waiting time for a
given set of processes

» So we always use it, right?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Non-Preemptive Sk

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 I
P, 5.0 4

* Average waitingtime=(0+6+3+7)/4 =4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Preemptive Sk

Process Arrival Time Burst Time
P, 0.0 7/
P, 2.0 4
P; 4.0 I
P, 5.0 4

* Average waiting time=(9+ 1 +0+2)/4=3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Determining Next CPU Burst

* Can only estimate the length

* Can be done by using the length of previous CPU
bursts, using exponential averaging

1. t, =actual length of n CPU burst
2. t,, =predicted value for the next CPU burst
3. a,0=0a =<1

4. Define: 7, =ar, +(1-a)r,.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Determining Next CPU Burst

* If =0, no weighting to recent history (e.g., current conditions are
transient)

* If a=1, no weighting to old history

* Typically, choose a=1/2 which gives equal weighting to recent
and past history
1. t =actual length of n” CPU burst
2. 7, ., = predicted value for the next CPU burst
3. o, 0=sa =<1

4. Define: 7, =at, +(l-a)T,.

n

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Exponential Averaging

OF OREGON

* If we expand the formula, we get:
T =t -a)at, | + ...
+Hl-a)ot, + ...

1 -a)t

* Since both a and (1 -) are less than or equal to |,

each successive term has less weight than its
predecessor

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU Burst Prediction Q

OF OREGON

CPU burst (t) 6 4 6 4 13 13 13

"guess” (t) 10 8 6 6 5 9 11 12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Scheduling Algorithms

OF OREGON

* First-come, First-serve (FCFS)
» Non-preemptive

» Does not account for waiting time (or much else)

* Convoy problem

* Shortest Job First
» May be preemptive
» Optimal for minimizing waiting time (how?)

* Lots more... And what do real systems use!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Priority Scheduling

OF OREGON

» Each process is given a certain priority “value”.

* Always schedule the process with the highest priority.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Duration(s) Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Gantt Chart for Priority Scheduling

o 1 6 16 18 19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Priorities

OF OREGON

* Note that FCFS and SJF are specialized versions of
Priority Scheduling

» i.e.there is a way of assigning priorities to the processes so
that Priority Scheduling would result in FCFS/SJF.

» What would examples of those priority functions be?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round Robin (RR) o

OF OREGON

* Each process gets a small unit of CPU time (time
quantum)

» Usually 10-100 milliseconds

» After this time has elapsed, the process is preempted and
added to the end of the ready queue

* Approach

» If there are n processes in the ready queue and the time
quantum is g

» Then each process gets |/n of the CPU time
» In chunks of at most g time units at once.

» No process waits more than (n-1)g time units

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round Robin

T’?r::'?s') Job length (s)
P1 0 24
P2 0 3
P3 0

Time Quantum =4 s

‘ P1 ‘ P2
0 4 7

11 15

P1 ‘ P1 ‘ P1

| 71 |

18

22 26

30

34

O

UNIVERSITY
OF OREGON

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

RR Time Quantum o

OF OREGON

* Round robin is virtually sharing the CPU between the
processes giving each process the illusion that it is
running in isolation (at |/n-th the CPU speed).

* Smaller the time quantum, the more realistic the
illusion (note that when time quantum is of the order
of job size, it degenerates to FCFS).

* But what is the drawback when time quantum gets
smaller?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

RR Time Quantum o

OF OREGON

* For the considered example, if time quantum size
drops to 2s from 4s, the number of context switches
increases to {???

» But context switches are not free!
» Saving/restoring registers
» Switching address spaces

» Indirect costs (cache pollution)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Scheduling Desirables

OF OREGON

« SJF
» Minimize waiting time
* Requires estimate of CPU bursts
* Round robin

» Share CPU via time quanta

* If burst turns out to be “too long”
* Priorities
» Some processes are more important

» Priorities enable composition of “importance” factors

* No single best approach -- now what!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Round Robin with Priority O

UNIVERSITY
OF OREGON

* Have a ready queue for each priority level.

* Always service the non-null queue at the highest
priority level.

* Within each queue, you perform round-robin
scheduling between those processes.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Round-Robin with Priority e

OF OREGON

-

) \ /
Q)
>
(D,
J
> | ,
| - . ‘\<
o
-
al

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

What Is the problem!?

OF OREGON

* With fixed priorities, processes lower in the priority
level can get starved out!

* |In general, you employ a mechanism to “age” the
priority of processes.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Multilevel Queue

» Ready queue is partitioned into separate queues:
foreground (interactive) & background (batch)

* Each queue has its own scheduling algorithm,
foreground — RR & background — FCFS

* Scheduling must be done between the queues.

» Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

» Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes;i.e., 80% to
foreground in RR

» 20% to background in FCFS

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multilevel Feedback Queue

O

UNIVERSITY
OF OREGON

* A process can move between the various queues;
aging can be implemented this way

» Multilevel-feedback-queue scheduler defined by the
following parameters:

4

4

4

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will
enter when that process needs service

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Multilevel Feedback Queue

* Three queues:

» Qo — RR with time quantum 8 milliseconds

» Qi — RR time quantum |6 milliseconds

4 Qz — FCFS
* Scheduling

» A new job enters queue Qo which is served FCFS.When it
gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q.

» At Q) job is again served FCFS and receives |6 additional
milliseconds. [f it still does not complete, it is preempted
and moved to queue Q..

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Multilevel Feedback Queues

' g
>| quantum = 8
: >
44‘ quantum = 16
’ >
—»{‘ FCFS -

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Performance for Schedulers

OF OREGON

* Queueing Theory Analysis - uses well-established
mathematical models and techniques.

 Simulation - create a model of the system and
simulate its performance using simulation software.

* Empirical Experiments - implement and test the
algorithms in a real system.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

ueuing [heory Analysis S

OF OREGON

Single-server Queue:

Waiting line

(queune) Y X =
: Dispatching
ArTiVals discipline Departures
> - Server -
A = arrival rate
vV
|< .+ T, = service time
p = utilization

w = items waiting
T, = waiting time

- -

(= items in queuning system
Ty = queuing time

Figure A.2 Queuing System Structure and Parameters for Single-Server Queue

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Queuing Theory Analysis

OF OREGON

* Inputs:

» arrival rate - from a probability distribution (usually Poisson
which implies random arrivals)

» service time - from a probability distribution (often
exponential)

» scheduling discipline/algorithm

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Queuing Theory Analysis

OF OREGON

» Outputs:
» ltems waiting
» Waiting time
» ltems queued

» Queuing time

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Queuing Theory Analysis S

OF OREGON

Single-server Queue:

Waiting line
(queune)

_ Dispatching
Arrivals discipline Departures

- Bt Server >

A = arrival rate

v

|‘ .1 T, = service time
” XREL p = utilization

W =1tems watting

T, = waiting time

- -

(= items in queuning system
Ty = queuing time

Figure A.2 Queuing System Structure and Parameters for Single-Server Queue

Little’s Formula:n = AW (n = queue length)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Simulation Analysis

OF OREGON

* Discrete-event Simulation

» Often uses models similar to queueing analysis

» More detailed or more realistic parameters (e.g. trace
driven)

» Simulates events step by step and gathers statistics rather
than using mathematical formulas

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Empirical Experiments

OF OREGON

* Run experiments on live system

* Properties:
» Costly and time-consuming
» Sometimes not possible

» More realistic

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Tradrtional UNIX Scheduling

* Multilevel feedback queues

» |28 priorities possible (-64 to +63)

* | Round Robin queue per priority

* Every scheduling event the scheduler picks the
highest priority (lowest number) non-empty queue
and runs jobs in round-robin

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

UNIX Process Scheduling O

OF OREGON

* Negative numbers reserved for processes waiting in kernel
mode (just woken up by interrupt handlers) (why do they
have a higher priority?)

* Time quantum = 1/10 sec (empirically found to be the
longest quantum that could be used without loss of the
desired response for interactive jobs such as editors)

» short time quantum means better interactive response

» long time quantum means higher overall system throughput since
less context switch overhead and less processor cache flush.

* Priority dynamically adjusted to reflect

» resource requirement (e.g., blocked awaiting an event)

» resource consumption (e.g., CPU time)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

L Inux Scheduler

* Kernel 2.4 and earlier: essentially the same as the
traditional UNIX scheduler

* Kernel 2.6: O(1) scheduler

» time to select process is constant regardless of system load
or the number of processors

» separate queue for each priority level

» CPU affinity (keeps processes on same CPU)

* More recently (kernel 2.6.23 and up): CFS
» Completely fair scheduler (runs O(log N))

* uses red-black trees rather than runqueues

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

Linux Scheduling

* Two algorithms: time-sharing and real-time

* Time-sharing (still abstracted)
» Two queues: active and expired

» In active, until you use your entire time slice (quantum), then expired

* Once in expired, Wait for all others to finish (fairness)
» Priority recalculation -- based on waiting vs. running time
* From 0-10 milliseconds
* Add waiting time to value, subtract running time
* Adjust the static priority
* Real-time
» Soft real-time

» Posix.|b compliant — two classes

* FCFS and RR; Highest priority process always runs first

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Time-Slice length

OF OREGON

The Relationship Between Priorities
and Time-Slice length

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Priorities

OF OREGON

List of Tasks Indexed
According to Priorities

active expired
array array
priority task lists priority task lists
0] 0—O 0] O0—O0—0
[1] @—9 @ [1] O
[140] O [140] O—O

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

Summary

OF OREGON

» CPU Scheduling

» Algorithms

» Combination of algorithms

* Multi-level Feedback Queues

* Scheduling Systems
» UNIX

» Linux

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

O

UNIVERSITY
OF OREGON

* Next time: Synchronization

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

