
Computer and Information Science

Prof. Butler
Spring 2012

CIS 415:
Operating Systems

Synchronization

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Resources
• There are different kinds of resources that are shared between

processes:

– Physical (terminal, disk, network, …)

– Logical (files, sockets, memory, …)

• For the purposes of this discussion, let us focus on “memory” to be the
shared resource

– i.e. processes can all read and write into memory (variables) that are shared.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Problems due to sharing

• Consider a shared printer queue, spool_queue[N]

• 2 processes want to enqueue an element each to this queue.

• tail points to the current end of the queue

• Each process needs to do
tail = tail + 1;

spool_queue[tail] = “element”;

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

What we are trying to do
Spool_queue

tail

Process 1

tail = tail + 1;
Spool_queue[tail] = X

X

Process 2

tail = tail + 1;
Spool_queue[tail] = Y

Y

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

What is the problem?

• tail = tail + 1 is NOT 1 machine instruction

• It can translate as follows:
Load tail, R1

Add R1, 1, R2

Store R2, tail

• These 3 machine instructions may NOT be executed
atomically.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interleaving
• If each process is executing this set of 3 instructions, context switching

can happen at any time.

• Let us say we get the following resultant sequence of instructions
being executed:

P1: Load tail, R1

P1: Add R1, 1, R2

P2: Load tail, R1

P2: Add R1, 1, R2

P1: Store R2, tail

P2: Store R2, tail

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Leading to …

Spool_queue

tail

Process 1

tail = tail + 1;
Spool_queue[tail] = X

X

Process 2

tail = tail + 1;
Spool_queue[tail] = Y

Y

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Race Conditions

• Situations like this that can lead to erroneous
execution are called race conditions
– The outcome of the execution depends on the particular

interleaving of instructions

• Debugging race conditions can be fun!
– since errors can be non-repeatable.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Avoiding Race Conditions

• If we had a way of making those (3) instructions atomic
– i.e. while one process is executing those instructions, another

process cannot execute the same instructions
– then we could have avoided the race condition.

• These 3 instructions are said to constitute a critical
section.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Requirements for Solution
1. Mutual Exclusion - If process Pi is executing in its critical section, then

no other processes can be executing in their critical sections

2.	
 Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3.	
 Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted

• Assume that each process executes at a nonzero speed

• No assumption concerning relative speed of the N processes

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Implementing Critical Sections

• Disable Interrupts

– Effectively stops scheduling other processes.

• Busy-wait/spinlock Solutions

– Pure software solutions

– Integrated hardware-software solutions

• Blocking Solutions

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Disabling Interrupts
• Advantages: Simple to implement

• Disadvantages:

– Do not want to give such power to user processes

– Does not work on a multiprocessor

– Disables multiprogramming even if another process is NOT interested in
critical section

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Disable Interrupts

– Effectively stops scheduling other processes.

• Busy-wait/spinlock Solutions

– Pure software solutions

– Integrated hardware-software solutions

• Blocking Solutions

Implementing Critical Sections

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Busy Waiting

• Overall philosophy: Keep checking some state
(variables) until they indicate other process(es) are not
in critical section.

• However, this is a non-trivial problem.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

P1 {

while (locked == TRUE)
 ;

locked = TRUE;

/************
(critical section code)

/************

locked = FALSE;
}

P2 {

while (locked == TRUE)
 ;

locked = TRUE;

/************
(critical section code)

/************

locked = FALSE;
}

locked = FALSE;

We have a race condition again since there is a gap between detection
locked is FALSE, and setting locked to TRUE.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

1. Strict Alternation
turn = 0;

P0 {
 while (turn != 0);
 /*********/
 critical section
 /*********/
 turn = 1;
}

P1 {
 while (turn != 1);
 /*********/
 critical section
 /*********/
 turn = 0;
}

It works!

Problems:
 - requires processes to alternate
 getting into CS
 - does NOT meet Progress
 requirement.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Fixing “progress” requirement
bool flag[2]; // initialized to FALSE

P0 {
 flag[0] = TRUE;
 while (flag[1] == TRUE)
 ;
 /* critical section */
 flag[0] = FALSE;
}

P1 {
 flag[1] = TRUE;
 while (flag[0] == TRUE)
 ;
 /* critical section */
 flag[1] = FALSE;
}

Problem:
 Both can set their
 flags to true and wait
 indefinitely for the other

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Peterson’s Solution
• Two process solution

• Assume that the LOAD and STORE instructions are
atomic; that is, cannot be interrupted.

• The two processes share two variables:

– int turn;

– Boolean flag[2]

• The variable turn indicates whose turn it is to enter the
critical section.

• The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that
process Pi is ready!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Peterson’s Algorithm
 int turn;
 int interested[N];!/* all set to FALSE initially */

 enter_CS(int myid) { /* param. is 0 or 1 based on P0 or P1 */
! int other;

! otherid = 1 – myid; /* id of the other process */
! interested[myid] = TRUE;
! turn = otherid;
! while (turn == otherid && interested[otherid] == TRUE)
 ;
! /* proceed if turn == myid or interested[otherid] == FALSE */
 }

 leave_CS(int myid) {
! interested[myid] = FALSE;
 }

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Intuitively …

• This works because a process can enter CS, either
because

‣ Other process is not even interested in critical section

‣ Or even if the other process is interested, it did the
“turn = otherid” first.

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Prove that

• It is correct (achieves mutex)

‣ If both are interested, then 1 condition is false for one and
true for the other.

‣ This has to be the “turn == otherid” which cannot be false
for both processes.

‣ Otherwise, only one is interested and gets in

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Prove that

• There is progress

‣ If a process is waiting in the loop, the other person has to
be interested.

‣ One of the two will definitely get in during such scenarios.

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Prove that

• There is bounded waiting

‣ When there is only one process interested, it gets through

‣ When there are two processes interested, the first one
which did the “turn = otherid” statement goes through.

‣ When the current process is done with CS, the next time it
requests the CS, it will get it only after any other process
waiting at the loop.

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Disable Interrupts

– Effectively stops scheduling other processes.

• Busy-wait/spinlock Solutions

– Pure software solutions

– Integrated hardware-software solutions

• Blocking Solutions

Implementing Critical Sections

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Complications arose because we had atomicity only
at the granularity of a machine instruction, and what a
machine instruction could do was limited.

• Can we provide specialized instructions in hardware
to provide additional functionality (with an
instruction still being atomic)?

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Specialized Instructions

• Bool Test&Set(bool)

• Swap (bool, bool)

• Note that these are machine/assembly instructions, and
are thus atomic.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Test&Set

Atomic bool Test&Set(bool x) {

temp = x;

x = TRUE;

return (temp);

}

• Note that “=x” and “x=“ would have required at least 1 machine instruction each
without this specialized instruction.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Using Test&Set()

Bool lock;

Enter_CS() {
 while
(Test&Set(lock))
 ;
}

Exit_CS() {
 lock = FALSE;
}

NOTE: This solution does
not guarantee bounded Waiting.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Swap()

Atomic Swap(bool a, bool b) {

temp = a;

a = b;

b = temp;

}

• Again, all this is done atomically!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Using swap()
Bool lock;

Enter_cs() {

key = TRUE; /* local var */

while (key == TRUE) swap(key,lock);

}

Exit_cs() {

lock = FALSE;

}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Spinning vs. Blocking

• In the previous solns., we busy-waited for some condition to
change.

• This change should be effected by some other process.

• We are “presuming” that this other process will eventually get
the CPU (some kind of pre-emptive scheduler).

• This can be inefficient because:
– You are wasting the rest of your time quantum in busy-waiting

– Sometimes, your programs may not work! (if the OS scheduler is not
pre-emptive).

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• In blocking solutions, you relinquish the CPU at the time you
cannot proceed, i.e. you are put in the blocked queue.

• It is the job of the process changing the condition to wake you
up (i.e. move you from blocked back to ready queue).

• This way you do not unnecessarily occupy CPU cycles.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

More than just Exclusion

• Synchronization constructs required for more than
exclusion.
–E.g. If printer queue is full, I need to wait until there is at

least 1 empty slot

–Note that mutex_lock()/mutex_unlock() are not very
suitable to implement such synchronization

–We need constructs to enforce orderings (e.g. A should
be done after B).

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Semaphores

• You are given a data-type Semaphore_t.

• On a variable of this type, you are allowed

– P(Semaphore_t) -- wait

– V(Semaphore_t) – signal

• Intuitive Functionality:

– Logically one could visualize the semaphore as having a counter initially set
to 0.

– When you do a P(), you decrement the count, and need to block if the
count becomes negative.

– When you do a V(), you increment the count and you wake up 1 process
from its blocked queue if not null.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Semaphore Implementation

typedef struct {
 int value;
 struct process *L;
} semaphore_t;

void P(semaphore_t S) {
 S.value--;
 if (S.value < 0) {
 add this process to S.L and
 remove from ready queue
 context switch to another
 }
}

void V(semaphore_t S) {
 S.value++;
 if (S.value <= 0) {
 remove a process from S.L
 put it in ready queue
 }
}

NOTE: These are OS system calls, and there is no atomicity lost during
 the execution of these routines (interrupts are disabled).

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Binary vs. Counting Semaphores

• What we just discussed is a counting semaphore.

• A binary semaphore restricts the “value” field to just
0 or 1.

• We will mainly restrict ourselves to counting
semaphores.

• Exercise: Implement counting semaphores using
binary semaphores.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Semaphores can implement Mutex

Semaphore_t m;

Mutex_lock() {
 P(m);
}

Mutex_unlock() {
 V(m);
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Classic Synchronization Problems

• Bounded-buffer problem

• Readers-writers problem

• Dining Philosophers problem

• ….

• We will compose solutions using semaphores

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Bounded Buffer problem

• A queue of finite size implemented as an array.

• You need mutual exclusion when adding/removing from the
buffer to avoid race conditions

• Also, you need to wait when appending to buffer when it is
full or when removing from buffer when it is empty.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Bounded Buffer using Semaphores

int BB[N];
int count, head, tail = 0;
Semaphore_t m; // value initialized to 1
Semaphore_t empty; // value initialized to N
Semaphore_t full; // value initialized to 0

Append(int elem) {
 P(empty);
 P(m);

 BB[tail] = elem;
 tail = (tail + 1)%N;
 count = count + 1;

 V(m);
 V(full);
}

int Remove () {
 P(full);
 P(m);

 int temp = BB[head];
 head = (head + 1)%N;
 count = count - 1;

 V(m);
 V(empty);
 return(temp);
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Readers-Writers Problem

• There is a database to which there are several readers
and writers.

• The constraints to be enforced are:
–When there is a reader accessing the database,

there could be other readers concurrently
accessing it.

–However, when there is a writer accessing it,
there cannot be any other reader or writer.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Readers-writers using Semaphores

Database db;
int nreaders = 0;
Semaphore_t m; // value initialized to 1
Semaphore_t wrt; // value initialized to 1

Reader() {
 P(m);
 nreaders++;
 if (nreaders == 1) P(wrt);
 V(m);

 …. Read db here …

 P(m);
 nreaders--;
 if (nreaders == 0) V(wrt);
 V(m);
}

Writer() {
 P(wrt);

 … Write db here …

 V(wrt);
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Dining Philosophers Problem

Philosophers alternate between
thinking and eating.

When eating, they need both
(left and right) chopsticks.

A philosopher can pick up only 1
chopstick at a time.

After eating, the philosopher
puts down both chopsticks.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Semaphore_t chopstick[5];

Philosopher(i) {
 while () {
 P(chopstick[i]);
 P(chopstick[(i+1)%5];

 … eat …

 V(chopstick[i]);
 V(chopstick[(i+1)%5];

 … think …
 }
}

This is NOT correct!

Though no 2
philosophers

 use the same chopstick
 at any time, it can so

 happen that they all pick
 up 1 chopstick and wait
 indefinitely for another.

This is called a deadlock

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Note that putting
P(chopstick[i]);

P(chopstick[(i+1)%5];

 within a critical section (using say P(mutex)/V(mutex)) can
avoid the deadlock.

• But then, only 1 philosopher can eat at any time!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

int state[N];
Semaphore_t s[N]; // init. to 0
Semaphore_t mutex; // init. to 1

#define LEFT! (i-1)%N
#define RIGHT!(i+1)%N

philosopher(i) {
 while () {
! take_forks(i);
! eat();
! put_forks(i);
 think();
 }
}

take_forks(i) {
! P(mutex);
! state[i] = HUNGRY;
! test(i);
! V(mutex);
! P(s[i]);
}

put_forks(i) {
! P(mutex);
! state[i] = THINKING;
! test(LEFT);
! test(RIGHT);
! V(mutex);
}

test(i) { /* can phil i eat? if so, signal that philosopher */
! if (state[i] == HUNGRY &&
! state[LEFT] != EATING && state[RIGHT] != EATING) {
! ! state[i] = EATING;
! ! V(s[i]);
! }
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Synchronization constructs

• Mutual exclusion locks

• Semaphores

• Monitors

• Critical Regions

• Path Expressions

• Serializers

• ….

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Monitors
• An abstract data type consisting of

‣ Shared data

‣ Operations/procedures on this shared data

• External world only sees these operations (not the
shared data or how the operations and sync. are
implemented).

• Only 1 process can be “active” within the monitor at
any time

‣ i.e. of all the processes that are executing monitor code,
there can be at most 1 process in ready queue (rest are
either blocked or not in monitor!)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• In addition, you have a condition variable construct
available within a monitor.

– Condition_t x, y;

• You can perform the following operations on a condition
variable:

– Wait(x): Process invoking this is blocked until someone does a
signal.

– Signal(x); Resumes exactly one blocked process.

• NOTE: If the signal comes before the wait, the signal gets
lost!!! – You need to be careful since signals are not stored
unlike semaphores.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• When P1 signals to wake up P2, note that both
cannot be simultaneously running as per monitor
definition.

• There are these choices:
– Signalling process (P1) executes, and P2 waits until the

monitor becomes free.

– P2 resumes execution in monitor, while P1 waits for
monitor to become free.

– Some other process (waiting for entry) gets the
monitor, while both P1 and P2 wait for monitor to
become free.

• In general, try to write solutions that do not depend
on which choice is used when implementing the
monitor.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Data

Condition
Variables

X

Y

Initialization
 Code

Operations/Procedures
Append() Remove()

Structure of a Monitor

Entry Queue

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Bounded Buffer using Monitors
Monitor Bounded_Buffer;

Buffer[0..N-1];
int count= 0, head=tail=0;
Cond_t not_full, not_empty;

Remove() {
! if count == 0 wait(not_empty);
! Data = Buffer[tail];
! count--;
! tail = (tail+1)%N;
! if !empty(not_full) signal(not_full);
}

Append(Data) {
! if count == N wait(not_full);
! Buffer[head] = Data
! count++;
! head = (head+1)%N;
! if !empty(not_empty) signal(not_empty);
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Exercise

• Write monitor solutions for Readers-writers, and
Dining Philosophers.

53

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Pthreads Synchronization
• Mutex Locks

– Protection Critical Sections

– pthread_mutex_lock(&lock), pthread_mutex_unlock(&lock)

• Condition Variables

– For Value-based Control

– pthread_cond_wait(&cond), pthread_cond_signal(&cond)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

pthread_mutex_t lock;

big_lock() {

 pthread_mutex_init(&lock);

 /*
 … initial code
 */
 pthread_mutex_lock(&lock);

 /*
 … critical section
 */
 pthread_mutex_unlock(&lock);

 /*
 … remainder
 */
}

Put code like around every
critical section, like big_lock

What if reading and writing?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Readers-writers using Pthreads

thread_ongoing_t *ongoing;
int nr = 0, nw = 0;
pthread_cond_t OKR, OKW;

void req_read(void) {
! while (nw > 0) pthread_cond_wait(&OKR);
! nr++;
! pthread_cond_signal(&OKR);
}
void rel_read(void) {
! nr--;
! if (nr == 0) pthread_cond_signal(&OKW);
}
void req_write(void) {
! while (nr > 0 || nw > 0) pthread_cond_wait(&OKW);
! nw++;
}
void rel_write(void) {
! nw--;
! pthread_cond_signal(&OKW);
! pthread_cond_signal(&OKR);
}

Reader Thread:
! rw.req_read();
! read ongoing
! rw.rel_read();
Writer Thread:
! rw.req_write();
! modify ongoing
! rw.rel_write();

// Initialization done elsewhere

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• Semaphores

• Classical Synchronization Problems

• Monitors

• Implementation in Pthreads

57

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Deadlock

58

