
Computer and Information Science

Spring 2012
Prof. Kevin Butler

CIS 415:
Operating Systems

Memory Management

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU

iL1

dL1

L2
 Main

Memory

On-chip
Disk

Ctrller

Net. Int.
Ctrller

Network

Memory Bus
(e.g. PC133)

I/O
Bus

(e.g. PCI)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Binding Programs to Addresses

• Address binding of instructions and data to memory
addresses can happen at three different stages

‣ Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes

‣ Load time: Must generate relocatable code if memory
location is not known at compile time

‣ Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory
segment to another. Need hardware support for address
maps (e.g., base and limit registers)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Loading User Programs

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Logical & Physical Addresses

• The concept of a logical address space that is bound to
a separate physical address space is central to proper
memory management

‣ Logical address – generated by the CPU; also referred
to as virtual address

‣ Physical address – address seen by the memory unit

• Logical and physical addresses are the same in
compile-time and load-time address-binding schemes;
logical (virtual) and physical addresses differ in
execution-time address-binding scheme

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory Management Unit

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Need for Memory Management

• Physical memory (DRAM) is limited

‣ A single process may not all fit in memory

‣ Several processes (their address spaces) also need to fit at
the same time

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Swapping

• If something (either part of a process, or multiple processes)
does not fit in memory, then it has to be kept on disk.

• Whenever that needs to be used by the CPU (to fetch the
next instruction, or to read/write a data word), it has to be
brought into memory from disk.

• Consequently, something else needs to be evicted from
memory.

• Such transfer between memory and disk is called swapping.

• Disallow 1 process from accessing another process’s memory.

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Swap Space

• Usually a separate portion of the disk is reserved for
swapping, that is referred to as swap space.

• Note that swapping is different from any explicit file
I/O (read/write) that your program may contain.

• Typically swapping is transparent to your program.

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Swapping

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Early Days: Overlays

OS

P1

Disk

Done explicitly
 by application.

In this case, even a single application process does not fit

entirely in memory

Overlay
Region

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Even if a process fits entirely in memory,
we do not want to do the following …

OS

P1

P1

P2

OS

P2
P2

P3

OS

P3
P3

P1

Context switching will be highly inefficient, and it

defeats the purpose of multiprogramming.

Swapping

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Multiprogramming
• Say your program does explicit file I/O (read/write) for a

fraction f of its execution time, then with p processes, CPU
efficiency = (1 – fp)

• To maintain high CPU efficiency, we need to increase p.

• But as we just saw, these processes cannot all be on disk. We
need to keep as many of these processes in memory as possible.

• So even if we are not keeping all of the process, keep the
essential parts of as many processes as possible in memory.

• We will get back to this issue at a later point!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory Allocation

OS

P1

P2

P3

Allocated
Regions

Free Regions
(Holes)

Queue of waiting
requests/jobs

Question: How do we
perform this allocation?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Goals

• Allocation() and Free() should be fairly efficient

• Should be able to satisfy more requests at any time
(i.e. the sum total of holes should be close to 0 with
waiting requests).

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Solution Strategies

• Contiguous allocation

‣ The requested size is granted as 1 big contiguous chunk.

‣ E.g. first-fit, best-fit, worst-fit, buddy-system.

• Non-contiguous allocation

‣ The requested size is granted as several pieces (and typically
each of these pieces is of the same – fixed - size).

‣ E.g., paging

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Contiguous Allocation

• Data structures:

‣ Queue of requests of different sizes

‣ Queues of allocated regions and holes.

• Find a hole and make the allocation (and it may result
in a smaller hole).

• Eventually, you may get a lot of holes that become
small enough that they cannot be allocated
individually.

• This is called external fragmentation.

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Fragmentation
• External Fragmentation – free space between allocated

memory regions

• Internal Fragmentation – free space within an allocated
region
‣ allocated memory may be slightly larger than requested

memory; this size difference is memory internal to a
partition, but not being used

• Reduce external fragmentation by compaction
‣ Shuffle memory contents to place all free memory together

in one large block

‣ Compaction is possible only if relocation is dynamic, and is
done at execution time

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Internal Fragmentation

• Partitioned allocation may result in very small
fragments

‣ Assume allocation of 126 bytes

‣ Use 128 byte block, but 2 bytes left over

• Maintaining a 2-byte fragment is not worth it, so just
allocate all 128 bytes

‣ But, 2 bytes are unusable

‣ Called internal fragmentation

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Non-contiguous Allocation

Wasted

This can result in more

Internal Fragmentation

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Easing External Fragmentation

Compaction

Note that this can be done only with relocatable code
and data (use indirect/indexed/relative addressing)

But compaction is expensive and we want to do this as
infrequently as possible.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Contiguous Allocation

• Which hole to allocate for a given request?

• First-fit

‣ Search through the list of holes. Pick the first one that is
large enough to accommodate this request.

‣ Though allocation may be easy, it may not be very efficient
in terms of fragmentation.

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Allocation Strategies

• Best Fit

‣ Search through the entire list to find the smallest hole that
can accommodate the given request.

‣ Requires searching through the entire list (or keeping it in
sorted order).

‣ This can actually result in very small sized
holes making it undesirable.

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Allocation Strategies

• Worst fit

‣ Pick the largest hole and break that.

‣ The goal is to keep the size of holes as large as possible.

‣ Allocation is again quite expensive (searching through entire
list or keeping it sorted).

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Freeing Memory

• You need to check whether nearby regions (on either
side) are free, and if so you need to make a larger
hole.

• This requires searching through the entire list (or at
least keeping the holes sorted in address order).

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Costs

• Allocation: Keeping list in sorted size order or
searching entire list each time (O(N)).

• Free: Keeping list in sorted address order or
searching entire list each time (O(N)).

• Alternative used in Linux: the buddy system

‣ Group free page frames into 11 block lists divided into
power-of-2 blocks (1, 2, 4, 8, ... 1024)

‣ Checks whether free blocks in each list in increasing order

‣ Allocation/free become O(log(N)) operations

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

An Example

1 M

1 MB block

Request

 100K

Request

 240K

Request

 64K

A=128K 256K 512K128K

A=128K A=128K B=256K 512K

A=128K C=64
K 64K B=256K 512K

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Request

 256K

Release

 A

Release

 B

Request

 75K

A=128K C=64
K B=256K D=256K 256K

A=128K C=64
K 64K 256K D=256K 256K

128K C=64
K 64K 256K D=256K 256K

E=128K C=64
K 64K 256K D=256K 256K

64K

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Release

 C

Release

 E

Release

 D 1 M

E=128K 128K 256K D=256K 256K

512K D=256K 256K

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

128K C=64K 64K 256K D=256K 256K

1 MB

512 KB

256 KB

128 KB

64 KB

32 KB

16 KB

.

.

.

List of Available Holes

Start address, end
address, size=256K

Start address, end
address, size=256K

Start address, end
address, size=128K

Start address, end
address, size=64K

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Slab Allocator
• Slab is one or more physically contiguous “pages”

• Cache consists of one or more slabs

• Single cache for each unique kernel data structure

‣ Each cache filled with objects – instantiations of the data structure

• When cache created, filled with objects marked as free

• When structures stored, objects marked as used

• If slab is full of used objects, next object allocated from empty slab

‣ If no empty slabs, new slab allocated

• Benefits include no fragmentation, fast memory request satisfaction

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Slab Allocation

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory Mgmt. Basics
• Allocation
‣ Previously

• Allocate arbitrary-sized chunks (e.g., in old days, a process; now
arbitrary allocation done on the heap)

‣ Challenges
• Fragmentation and performance

• Swapping
‣ Need to use the disk as a backing store for limited physical

memory

‣ Problems
• Complex to manage backing of arbitrary-sized objects

• May want to work with subset of process (later)

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Programs are provided with a virtual address space (say 1
MB).

• Role of the OS to fetch data from either physical memory
or disk.
‣ Done by a mechanism called (demand) paging.

• Divide the virtual address space into units called “virtual
pages” each of which is of a fixed size (usually 4K or 8K).
‣ For example, 1M virtual address space has 256 4K pages.

• Divide the physical address space into “physical pages” or
“frames”.
‣ For example, we could have only 32 4K-sized pages.

Paging

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Role of the OS to keep track of which virtual page is
in physical memory and if so where?

‣ Maintained in a data structure called “page-table” that the
OS builds.

‣ “Page-tables” map Virtual-to-Physical addresses.

Page Table

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Page Tables

Virtual
Page #

Offset in
Page

Virtual
Address

VP # PP # Present

vp1 pp1

…

vpn ppn

Physical
Page #

Offset in
PagePhysical

Address

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Logical to Physical Memory

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Paging Example

32-byte memory and 4-byte pages

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Free Frames

Before allocation After allocation

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Page Table Entry Format

• Physical page Number

• Valid/Invalid bit.

• Protection bits (Read / Write / Execute)

• Modified bit (set on a write/store to a page)

‣ Useful for page write-backs on a page-replacement.

• Referenced bit (set on each read/write to a page).

‣ Will look at how this is used a little later.

• Disable caching.

‣ Useful for I/O devices that are memory-mapped.

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Valid (v)/Invalid (i) Bit in Page Table

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Issues to Address
• Size of page-tables would be very large!

• For example, 32-bit virtual address spaces (4 GB) and
a 4 KB page size would have ~1 M pages/entries in
page-tables.

• What about 64-bit virtual address spaces?!

• A process does not access all of its address space at
once! Exploit this locality factor.

• Use multi-level page-tables. Equivalent to paging the
page-tables.

• Inverted page-tables.
42

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Example: 2-level Page Table

Page
Tables

Page dir Page table Page offset

10 10 12

32-bit virtual address

32-bit physical address

Page
Directory

Code
Data

Stack

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Linux: 4-level page table (necessary for 64-bit arch)

• Virtual address space is sparse and widely scattered

‣ stack at top, heap at bottom, dynamic libraries in the middle

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Page-table lookup needs to be done on every
memory-reference for both code & data!

‣ Can be very expensive if this is done by software.

• Usually done by a hardware unit called the MMU
(Memory-Management Unit).

‣ Located between CPUs and caches.

MMU

45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Role of the MMU

• Given a Virtual Address, index in the page-table to get
the mapping.

• Check if the valid bit in the mapping is set, and if so
put out the physical address on the bus and let
hardware do the rest.

• If it is not set, you need to fetch the data from the
disk (swap-space).

‣ We do not wish to do this in hardware!

46

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Requirements

• Address translation/mapping must be very fast! Why?

‣ Because it is done on every instruction fetch, memory
reference instruction (loads/stores). Hence, it is in the
critical path.

• Previous mechanisms access memory to lookup the
page-tables. Hence it is very slow!

‣ CPU-Memory gap is ever widening!

• Solution: Exploit the locality of accesses.

47

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

TLBs
• Translation Look-Aside Buffer

• Typically programs access a small number of pages very
frequently.

• Temporal and spatial locality are indicators of future
program accesses.

• Temporal locality
‣ Likelihood of same data being re-accessed in the near future.

• Spatial locality
‣ Likelihood of neighboring locations being accessed in the near

future.

• TLBs act like a cache for page-table.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CAM
• Magic behind the TLB: associative memory

‣ also called content-addressable memory (CAM)

• Implements lookup table functionality in a single
clock cycle using dedicated comparison circuitry

‣ How does this differ from regular memory?

49

712 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 3, MARCH 2006

Content-Addressable Memory (CAM) Circuits and
Architectures: A Tutorial and Survey

Kostas Pagiamtzis, Student Member, IEEE, and Ali Sheikholeslami, Senior Member, IEEE

Abstract—We survey recent developments in the design of
large-capacity content-addressable memory (CAM). A CAM is
a memory that implements the lookup-table function in a single
clock cycle using dedicated comparison circuitry. CAMs are
especially popular in network routers for packet forwarding and
packet classification, but they are also beneficial in a variety of
other applications that require high-speed table lookup. The main
CAM-design challenge is to reduce power consumption associ-
ated with the large amount of parallel active circuitry, without
sacrificing speed or memory density. In this paper, we review
CAM-design techniques at the circuit level and at the architec-
tural level. At the circuit level, we review low-power matchline
sensing techniques and searchline driving approaches. At the
architectural level we review three methods for reducing power
consumption.

Index Terms—Bank selection, content-addressable memory
(CAM), matchline pipelining, matchline sensing, NAND cell, NOR
cell, review, searchline power.

I. INTRODUCTION

ACONTENT-ADDRESSABLE memory (CAM) compares
input search data against a table of stored data, and

returns the address of the matching data [1]–[5]. CAMs have
a single clock cycle throughput making them faster than other
hardware- and software-based search systems. CAMs can be
used in a wide variety of applications requiring high search
speeds. These applications include parametric curve extraction
[6], Hough transformation [7], Huffman coding/decoding [8],
[9], Lempel–Ziv compression [10]–[13], and image coding
[14]. The primary commercial application of CAMs today
is to classify and forward Internet protocol (IP) packets in
network routers [15]–[20]. In networks like the Internet, a
message such an as e-mail or a Web page is transferred by
first breaking up the message into small data packets of a few
hundred bytes, and, then, sending each data packet individually
through the network. These packets are routed from the source,
through the intermediate nodes of the network (called routers),
and reassembled at the destination to reproduce the original
message. The function of a router is to compare the destination
address of a packet to all possible routes, in order to choose the
appropriate one. A CAM is a good choice for implementing
this lookup operation due to its fast search capability.

Manuscript received May 19, 2005; revised October 12, 2005. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and an Ontario Graduate Scholarship in Science and Tech-
nology (OGSST).

The authors are with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
pagiamt@eecg.toronto.edu; ali@eecg.toronto.edu).

Digital Object Identifier 10.1109/JSSC.2005.864128

Fig. 1. Conceptual view of a content-addressable memory containing
words. In this example, the search word matches location as indicated
by the shaded box. The matchlines provide the row match results. The encoder
outputs an encoded version of the match location using bits.

However, the speed of a CAM comes at the cost of increased
silicon area and power consumption, two design parameters
that designers strive to reduce. As CAM applications grow,
demanding larger CAM sizes, the power problem is further
exacerbated. Reducing power consumption, without sacrificing
speed or area, is the main thread of recent research in large-ca-
pacity CAMs. In this paper, we survey developments in the
CAM area at two levels: circuits and architectures. Before
providing an outline of this paper at the end of this section, we
first briefly introduce the operation of CAM and also describe
the CAM application of packet forwarding.

Fig. 1 shows a simplified block diagram of a CAM. The
input to the system is the search word that is broadcast onto
the searchlines to the table of stored data. The number of bits
in a CAM word is usually large, with existing implementations
ranging from 36 to 144 bits. A typical CAM employs a table
size ranging between a few hundred entries to 32K entries,
corresponding to an address space ranging from 7 bits to 15
bits. Each stored word has a matchline that indicates whether
the search word and stored word are identical (the match case)
or are different (a mismatch case, or miss). The matchlines are
fed to an encoder that generates a binary match location corre-
sponding to the matchline that is in the match state. An encoder
is used in systems where only a single match is expected. In
CAM applications where more than one word may match, a
priority encoder is used instead of a simple encoder. A priority
encoder selects the highest priority matching location to map
to the match result, with words in lower address locations
receiving higher priority. In addition, there is often a hit signal
(not shown in the figure) that flags the case in which there is no
matching location in the CAM. The overall function of a CAM
is to take a search word and return the matching memory loca-
tion. One can think of this operation as a fully programmable
arbitrary mapping of the large space of the input search word
to the smaller space of the output match location.

0018-9200/$20.00 © 2006 IEEE

714 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 3, MARCH 2006

Fig. 4. Simple schematic of a model CAM with 4 words having 3 bits
each. The schematic shows individual core cells, differential searchlines, and
matchline sense amplifiers (MLSAs).

miss condition. Finally, the encoder maps the matchline of the
matching location to its encoded address.

We organize the remainder of this paper by expanding upon
the structure of the model in Fig. 4. In the next section, Sec-
tion II, we begin our survey by looking at the two common
CAM cells, the NOR cell and the NAND cell, each of which can
be used as the basic building block in Fig. 4. The section con-
tinues by examining the combination of CAM cells to construct
a full matchline. Section III describes techniques for detecting
whether a matchline has a match or a miss. This section also
discusses matchline power consumption, and compares the re-
viewed techniques in terms of the power savings they provide.
In Section IV, we turn our attention to the searchlines, and ex-
amine proposals that save searchline power. Section V reviews
three architectural techniques that save power. Finally, in Sec-
tion VII, we explore future directions for CAM research.

II. CORE CELLS AND MATCHLINE STRUCTURE

A CAM cell serves two basic functions: bit storage (as in
RAM) and bit comparison (unique to CAM). Fig. 5 shows a
NOR-type CAM cell [Fig. 5(a)] and the NAND-type CAM cell
[Fig. 5(b)]. The bit storage in both cases is an SRAM cell where
cross-coupled inverters implement the bit-storage nodes D and

. To simplify the schematic, we omit the nMOS access tran-
sistors and bitlines which are used to read and write the SRAM
storage bit. Although some CAM cell implementations use lower
area DRAM cells [27], [30], typically, CAM cells use SRAM
storage. The bit comparison, which is logically equivalent to
an XOR of the stored bit and the search bit is implemented in a
somewhat different fashion in the NOR and the NAND cells.

A. NOR Cell

The NOR cell implements the comparison between the com-
plementary stored bit, D (and), and the complementary search
data on the complementary searchline, SL (and), using four
comparison transistors, through , which are all typically
minimum-size to maintain high cell density. These transistors
implement the pulldown path of a dynamic XNOR logic gate with
inputs SL and D. Each pair of transistors, and ,
forms a pulldown path from the matchline, ML, such that a mis-
match of SL and D activates least one of the pulldown paths,

Fig. 5. CAM core cells for (a) 10-T NOR-type CAM and (b) 9-T NAND-type
CAM [26]. The cells are shown using SRAM-based data-storage cells. For
simplicity, the figure omits the usual SRAM access transistors and associated
bitlines. The SRAM storage and access transistors account for six of the cell
transistors.

connecting ML to ground. A match of SL and D disables both
pulldown paths, disconnecting ML from ground. The NOR na-
ture of this cell becomes clear when multiple cells are connected
in parallel to form a CAM word by shorting the ML of each cell
to the ML of adjacent cells. The pulldown paths connect in par-
allel resembling the pulldown path of a CMOS NOR logic gate.
There is a match condition on a given ML only if every indi-
vidual cell in the word has a match.

B. NAND Cell

The NAND cell implements the comparison between the stored
bit, D, and corresponding search data on the corresponding
searchlines, (SL,), using the three comparison transistors

, , and , which are all typically minimum-size to
maintain high cell density. We illustrate the bit-comparison
operation of a NAND cell through an example. Consider the
case of a match when and . Pass transistor
is ON and passes the logic “1” on the SL to node B. Node B
is the bit-match node which is logic “1” if there is a match in
the cell. The logic “1” on node B turns ON transistor . Note
that is also turned ON in the other match case when
and . In this case, the transistor passes a logic
high to raise node B. The remaining cases, where ,
result in a miss condition, and accordingly node B is logic
“0” and the transistor is OFF. Node B is a pass-transistor
implementation of the XNOR function . The NAND nature
of this cell becomes clear when multiple NAND cells are serially
connected. In this case, the and nodes are joined
to form a word. A serial nMOS chain of all the transistors
resembles the pulldown path of a CMOS NAND logic gate. A
match condition for the entire word occurs only if every cell in
a word is in the match condition.

An important property of the NOR cell is that it provides a full
rail voltage at the gates of all comparison transistors. On the
other hand, a deficiency of the NAND cell is that it provides only
a reduced logic “1” voltage at node B, which can reach only

when the searchlines are driven to (where
is the supply voltage and is the nMOS threshold voltage).

C. Cell Variants

Fig. 6 shows a variant of the NOR cell [Fig. 6(a)] and a variant
of the NAND cell [Fig. 6(b)]. The NOR cell variant uses only
9-transistors compared to the previous 10-T NOR cell. The bit
comparison uses pass transistors (as in the previous 9-T NAND

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Address Translation w. TLB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Typically, TLB is a cache for a few (8/16/32) Page-table
entries.

• Given a virtual address, check this cache to see if the
mapping is present, and if so we return the physical
address.

• If not present, the MMU attempts the usual address
translation.

• TLB is usually designed as a fully-associative cache.

• TLB entry has

‣ Used/unused bits, virtual page number, Modified bit,
Protection bits, physical page number.

TLB Cache

51

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Address Translation Steps
• Virtual address is passed from the CPU to the MMU

(on instruction fetch or load/store instruction).

• Parallel search of the TLB in hardware to determine if
mapping is available.

• If present, return the physical address.

• Else MMU detects miss, and looks up the page-table as
usual. (NOTE: It is not yet a page-fault!)

• If page-table lookup succeeds, return physical address
and insert mapping into TLB evicting another entry.

• Else it is a page-fault.

52

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Fraction of references that can be satisfied by TLB is
called “hit-ratio(h)”.

• For example, if it takes 100 nsec to access page-table
entry and 20 nsec to access TLB,

‣ average lookup time = 20 * h + 100 * (1 – h).

Hit Ratio

53

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Inverted Page-tables

• Page-tables could become quite large!

• Above mechanisms pages the page-tables and uses
TLBs to take advantage of locality.

• Inverted page-tables organize the translation
mechanism around physical memory.

• Each entry associates a physical page with the virtual
page stored there!

‣ Size of Inverted Page-table = Physical Memory size / Page
size.

54

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Inverted
Page-table

Virtual Page # Offset in Page

Virtual Address

If VP# is
present, then

PP# is
available.

No entry
for VP#
in the
table

Page-table (can
be on disk)

Usual paging
mechanism

IVT implemented
in

a) Software
using hashing.

b) Hardware
using

associative
memory

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Segmentation

• Can be used as a programming convenience

• Several times you have different segments (code, data,
stack, heap), or even within data/heap you may want to
define different regions.

• You can then address these segments/regions using a base
+ offset.

• You can also define different protection permissions for
each segment.

• However, segmentation by itself has all those original
problems (contiguous allocation, fitting in memory, etc.)

56

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Segmentation with Paging

• Define segments in the virtual address space.

• In programs, you refer to an address using [Segment
Ptr + Offset in Segment].

‣ E.g Intel family

• Segment Ptr leads you to a page table, which you
then index using the offset in segment.

• This gives you physical frame #. You then use page
offset to index this page.

• Virtual address = (Segment #, Page #, Page Offset)

57

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

My research

• SwitchBlade architecture

• Take concept of segments and apply them to disk, not
just memory, to allow for inter-OS protections when
multiple OSes reside on a disk

• Mediate access to storage with physical token
containing capability

58

SBoot

Audit Log

S2

Host

SwitchBlade

Policy Store (NVRAM)

S1

Physical Token

with capability

SCSI/ATA

Interface Volume

Mgmt

Name Read Write

SBoot SBootR SBootW

S1 S1R S1W

S2 S2R S2W

Name Read Write

SBoot SBootR -

S2 S2R S2W
Token

Handler

Figure 3: SwitchBlade architecture. A physical token contains the set of labels for segments to be exported,
in this case, S2 and SBoot, the latter of which is exported as read only. The audit log is read only by
default and writable by the disk controller. In this case, the Token Handler constitutes the policy decision
point which configures volume management to export the segments allowed by the current physical token
according to the policy, which is stored in NVRAM.

(SBoot). The disk’s non-volatile memory stores attributes for each disk segment, allowing concurrent access
to policy metadata and disk data.

If the token user is an administrator, the audit log is exported, allowing viewing of past access decisions.
Enforcement of access policy takes place within the disk’s firmware, and is independent of the rest of the disk
controller code. It mediates all I/O requests at the disk level, inspecting them to see if sensitive operations
requiring a policy decision are necesary. The token plugged into the disk provides context in terms of what
segments are available for access. Decoupling the enforcement and controller code allows disk requests to
be pipelined, improving performance.

Management

For general use of SwitchBlade, we assume that each segment contains one operating system. This may be a
guest OS under the control of a virtual machine monitor, or a standalone OS available as part of a multiboot
configuration. Eash OS views its segment as a separate disk, with separate filesystems and swap partitions
within these segments. If desired, the disk policy can also define segments that only contain data, which can
act as shared storage between multiple running OSes.

For a multiboot system, using SwitchBlade is simple. Isolation is maintained as the the OS does not
know about any other storage existing on the disk beyond itself. For virtualized operation, we provide better
guarantees of isolation between running guest virtual machines by trusting the VMM to multiplex access to
virtual disks. The VMM is aware of each segment exported by the disk and allows each guest OS access
only to the segment from which its image was retrieved. This means that if the VMM is itself compromised,
only the segments exposed to the VMM, which may be only a subset of available segments on the disk, will
be exposed to compromise.

Booting from the disk is similar to a regular boot process. The equivalent of a disk’s master boot record
(MBR) in SwitchBlade is the boot segment, which has several additional features beyond those found in
a typical MBR. First, because segments may be of arbitrary size, the boot segment contains an enhanced
bootloader, as it needs to inspect the disk to discover which segments contain OSes. Second, the boot
segment is almost always kept in a read-only state to protect the integrity of the boot code, ensuring that the
system can be booted into a safe state. Of course, trusting the code on the boot segment is highly important;
advances in proving that a system is rooted in a trustworthy installation can be used here to strengthen these
guarantees [12].

Exporting the boot segment allows SwitchBlade to provide integrity guarantees for its contents. Once

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• Memory Management

‣ Limited physical memory resource

• Keep key process pages in memory

‣ Swapping (and paging, later)

• Memory allocation

‣ High performance

‣ Minimize fragmentation

59

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• Paging

‣ Non-contiguous allocation

‣ Pages and frames

‣ Fragmentation

‣ Page tables

‣ Hardware support

‣ Plus, Segmentation

60

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Virtual Memory

61

