
Computer and Information Science

CIS 415:
Operating Systems

VM Issues

Spring 2012
Prof. Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:

‣ Virtual Memory

• Today:

‣ Virtual Memory Uses

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Efficient Physical Memory
• Through virtual memory…

‣ N 232-sized address spaces

‣ All isolated by default

• Uses for memory

‣ Make a new process

• Address space

‣ Make an IPC

• Or a cross-address space call

• Challenges in memory use

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Pages

• Shared code

‣ One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

• Private code and data

‣ Each process keeps a separate copy of the code and data

‣ The pages for the private code and data can appear
anywhere in the logical address space

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Shared Pages Example

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Create New Address Space

• Via fork or clone

‣ Copy of the old address space

• Change completely

‣ Exec

• Or use the copy independently

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Copy-on-Write
• Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory

‣ If either process modifies a shared page, only then is the
page copied

• COW allows more efficient process creation as only
modified pages are copied

• Free pages are allocated from a pool
of zeroed-out pages

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

COW in Action
Before Process 1 modifies Page

C...

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

COW (ctd.)

C copy

After Process 1 modifies Page
C...

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Memory-mapped file I/O allows file I/O to be treated
as routine memory access by mapping a disk block to
a page in memory

‣ File is initially read using demand paging

‣ Page-sized portion of the file is read from the file system
into a physical page

‣ Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

10

Memory-Mapped Files

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Simplifies file access by treating file I/O through
memory rather than read() or write() system
calls

‣ What is the benefit of doing this?

• Also allows several processes to map the same file
allowing the pages in memory to be shared

11

Memory Mapping Benefits

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory Mapped Files

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory-Mapped Shared Mem

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

‣ low CPU utilization

‣ operating system thinks that it needs to increase the degree
of multiprogramming

‣ another process added to the system

• Thrashing ≡ a process is busy swapping pages in and
out

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Thrashing

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Demand Paging & Thrashing

• Why does demand paging work?
Locality model

‣ Process migrates from one locality to another

‣ Localities may overlap

• Why does thrashing occur?
Σ size of locality > total memory size

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory-Reference Locality

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Working-Set Model
• Δ ≡ working-set window ≡ a fixed number of page

references (e.g., 10,000 instructions)
• WSSi (working set of Process Pi) =

total number of pages referenced in the most recent
Δ (varies in time)
‣ if Δ too small, will not encompass entire locality
‣ if Δ too large, will encompass several localities
‣ if Δ = ∞ ⇒ will encompass entire program

• D = Σ WSSi ≡ total demand frames
• if D > m ⇒ Thrashing

• Policy: if D > m, suspend one of the processes
18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Working-set model

Sliding window that
approximates program

locality

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Tracking the Working Set
• Approximate with interval timer + reference bits

• Example: Δ = 10,000

‣ Timer interrupts after every 5000 time units

‣ Keep in memory 2 bits for each page

‣ Whenever a timer interrupts copy and set the values of all
reference bits to 0

‣ If one of the bits in memory = 1 ⇒ page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time
units

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Page-Fault Frequency

• Establish “acceptable” page-fault rate

‣ If actual rate too low, process loses frame

‣ If actual rate too high, process gains frame

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• Uses

‣ Shared Pages

‣ Copy-on-write

‣ Memory-mapped files

• Thrashing and the Working Set model

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Files

23

