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• Last class:

‣ Virtual Memory

• Today: 

‣ Virtual Memory Uses
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Efficient Physical Memory
• Through virtual memory…

‣ N 232-sized address spaces

‣ All isolated by default

• Uses for memory

‣ Make a new process 

• Address space

‣ Make an IPC

• Or a cross-address space call

• Challenges in memory use
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Shared Pages

• Shared code

‣ One copy of read-only (reentrant) code shared among 
processes (i.e., text editors, compilers, window systems).

• Private code and data 

‣ Each process keeps a separate copy of the code and data

‣ The pages for the private code and data can appear 
anywhere in the logical address space
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Shared Pages Example
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Create New Address Space

• Via fork or clone

‣ Copy of the old address space

• Change completely 

‣ Exec

• Or use the copy independently
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Copy-on-Write
• Copy-on-Write (COW) allows both parent and child 

processes to initially share the same pages in memory

‣ If either process modifies a shared page, only then is the 
page copied

• COW allows more efficient process creation as only 
modified pages are copied

• Free pages are allocated from a pool 
of zeroed-out pages
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COW in Action
Before Process 1 modifies Page 

C...
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COW (ctd.)

C copy

After Process 1 modifies Page 
C...
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• Memory-mapped file I/O allows file I/O to be treated 
as routine memory access by mapping a disk block to 
a page in memory

‣ File is initially read using demand paging

‣ Page-sized portion of the file is read from the file system 
into a physical page

‣ Subsequent reads/writes to/from the file are treated as 
ordinary memory accesses.
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• Simplifies file access by treating file I/O through 
memory rather than read() or write() system 
calls

‣ What is the benefit of doing this?

• Also allows several processes to map the same file 
allowing the pages in memory to be shared
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Memory Mapped Files
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Memory-Mapped Shared Mem
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Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to:

‣ low CPU utilization

‣ operating system thinks that it needs to increase the degree 
of multiprogramming

‣ another process added to the system

• Thrashing ≡ a process is busy swapping pages in and 
out
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Thrashing
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Demand Paging & Thrashing 

• Why does demand paging work?
Locality model

‣ Process migrates from one locality to another

‣ Localities may overlap

• Why does thrashing occur?
Σ size of locality > total memory size
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Memory-Reference Locality
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Working-Set Model
• Δ ≡ working-set window ≡ a fixed number of page 

references (e.g., 10,000 instructions)
• WSSi (working set of Process Pi) =

total number of pages referenced in the most recent 
Δ (varies in time)
‣ if Δ too small, will not encompass entire locality
‣ if Δ too large, will encompass several localities
‣ if Δ = ∞ ⇒ will encompass entire program

• D = Σ WSSi ≡ total demand frames 
• if D > m ⇒ Thrashing

• Policy: if D > m, suspend one of the processes
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Working-set model

Sliding window that 
approximates program 

locality
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Tracking the Working Set
• Approximate with interval timer + reference bits

• Example: Δ = 10,000

‣ Timer interrupts after every 5000 time units

‣ Keep in memory 2 bits for each page

‣ Whenever a timer interrupts copy and set the values of all 
reference bits to 0

‣ If one of the bits in memory = 1 ⇒ page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time 
units
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Page-Fault Frequency

• Establish “acceptable” page-fault rate

‣ If actual rate too low, process loses frame

‣ If actual rate too high, process gains frame
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Summary

• Uses

‣ Shared Pages 

‣ Copy-on-write

‣ Memory-mapped files 

• Thrashing and the Working Set model
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• Next time: Files
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