
Computer and Information Science

CIS 415:
Operating Systems

I/O Peripherals

Spring 2012
Prof. Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

OS role in I/O

• Share the same device across different processes/
users

• User does not see the details of how hardware
works

• Device-independent interface to provide uniformity
across devices.

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

CPU

iL1

dL1

L2
 Main

Memory

On-chip
Disk

Ctrller

Net. Int.
Ctrller

Memory Bus
(e.g. PC133)

I/O
Bus

(e.g. PCI)

0x00…0

0x0ff..f

0x100…0

0x1ff….f
0x200…0

0x2ff….f

I/O Peripherals

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Talk to Devices

• Communication

‣ Send instructions to the devices

‣ Get the results

• I/O Ports

‣ Dedicated I/O registers for communicating status and requests

• Memory-mapped I/O

‣ Map the registers into address space

‣ Communicate requests through memory operations

• Memory-mapped data “registers” can be larger

‣ Think graphics device

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Memory-mapped I/O

• Can read and write device registers just like normal
memory.

• However, user programs are NOT typically allowed
to do these reads/writes.

• The OS has to manage/control these devices.

• The addresses to these devices may not need to go
through address translation since

‣ OS is the one accessing them and protection does not need
to be enforced, and

‣ there is no swapping/paging for these addresses.

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Consider a disk device …

 Main
Memory

Memory Bus
(e.g. PC133)

I/O
Bus

(e.g. PCI)

0x00…0

0x0ff..f
0x100…0

0x1ff….f

Controller

RAM

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Reading sector from disk

Store [Command_Reg], READ_COMMAND
Store [Track_Reg], Track #

Store [Sector_Reg], Sector #

/* Device starts operation */

L: Load R, [Status_Reg]
 cmp R, 0

 jeq

/* Data now on memory of card */

For i = 1 to sectorsize
 Memtarget[i] = MemOnCard[i]

You don’t want to do this!
Instead, block/switch to
other process and let an
interrupt wake you up.

This is again a lot of
overhead to ask the main

CPU to do!

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Interrupt Cycle

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

DMA engine

 Main
Memory

Memory Bus
(e.g. PC133)

I/O
Bus

(e.g. PCI)

0x00…0

0x0ff..f
0x100…0

0x1ff….f

Controller

RAM
DMA

Used to offload work of copying
Lots of different offload engines possible in systems

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Store [Command_Reg], READ_COMMAND
Store [Track_Reg], Track #

Store [Sector_Reg], Sector #
Store [Memory_Address_Reg], Address

/* Device starts operation */

P(disk_request);

/* Operation complete and data is
 now in required memory locations*/

ISR() {
 V(disk_request);

}

Called when DMA raises
interrupt after

Completion of transfer

Assuming an
integrated DMA &

disk controller.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Issues to consider

• What is purpose of RAM on card?

‣ To address the speed mismatch between the bit stream coming from
disk and the transfer to main memory.

• When we program the DMA engine with address of transfer
(Store [Memory_Address_Reg], Address), is Address virtual or
physical?

‣ It has to be a physical address, since the addresses generated by the
DMA do NOT go through the MMU (address translation).

‣ But since it is the OS programming the DMA, this is available and it is
NOT a problem.

‣ You do NOT want to give this option to user programs.

‣ Also, the address needs to be “pinned” (cannot be evicted) in memory.

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

I/O Devices

• Block devices:

‣ usually stores information in fixed size blocks

‣ you read or write an individual block independently of
others by giving it an address.

‣ E.g., disks, tapes, …

• Character devices:

‣ delivers or accepts streams of characters

‣ Not addressable.

‣ E.g., terminals, printers, mouse, network interface.

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Principles of I/O Software

• Provide device independence:

‣ same programs should work with different devices.

‣ uniform naming -- i.e., name shouldn't depend on the device.

‣ error handling, handle it as low as possible and only if
unavoidable pass it on higher.

‣ synchronous (blocking) vs. asynchronous (interrupt
driven).	
 Even though I/O devices are usually async, sync is
easier to program

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device Characteristics

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

I/O Software

• A layered approach:

– Lowest layer (device dependent): Device drivers

– Middle layer: Device independent OS software

– High level: User-level software/libraries

• The first 2 are part of the kernel.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device Drivers

• Accept abstract requests from device-independent
OS software, and service those requests.

• There is a device driver for each “device”

• However, the interface to all device drivers is the
same.

‣ Open(), close(), read(), write(), interrupt(), ioctl(), …

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Disk driver
Semaphore request;

Open() { ….}

Close() { … }

Read() {
 ….

 program the device
 P(request);

 …
}

Write() { …. }

Interrupt() {
 check what caused the interrupt

 case disk_read: V(request);
 …

}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device-independent OS Layer

• Device naming and protection

‣ Each device is given a (major #,minor #) – present in the i-
node for that device

‣ Major # identifies the driver

‣ Minor # is passed on to the driver (to handle sub-devices)

• Does buffering/caching

• Uses a device-independent block size

• Handles error reporting in a device-independent
fashion.

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Putting things together (UNIX)

• User calls open(“/dev/tty0”,”w”) which is a system
call.

• OS traverses file system to find the i-node of tty0.

• This should contain the (major #, minor #).

• Check permissions to make sure it is allowed.

• An entry is created in OFDT, and a handle is returned
to the user.

• When user calls write(fd, ….) subsequently, index
into OFDT, get major/minor #s.

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

I/O and Kernel Objects

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Getting to the driver routine

Open_fp;
Close_fp;
Read_fp;
Write_fp;

….
Open_fp;
Close_fp;
Read_fp;
Write_fp;

….
Open_fp;
Close_fp;
Read_fp;
Write_fp;

….

Major #

Open() {…}
Close() {…}
Read() {…}
Write() {…}

….

Open() {…}
Close() {…}
Read() {…}
Write() {…}

….

In Memory Data Struct

Driver codes supplied by h/w vendors
Linked (needs kernel reboot for

Installation) or dynamically loaded into
Kernel.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Copy the bytes pointed to by the pointer given by
user, into a kernel “pinned” (which is not going to be
paged out) buffer.

• Use the above data structure, to find the relevant
driver’s write() routine, and call it with the pinned
buffer address, and other relevant parameters.

• For a write, one can possibly return back to user
even if the write has not propagated. On a read (for
an input device), the driver would program the
device, and block the activity till the interrupt.

Driver I/O

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Block Devices

• Previous description was for character device

• In a block device, before calling the driver, check the
buffer cache that the OS is maintaining to see if the
request can be satisfied before going to the driver
itself.

• The lookup is done based on
(major #, logical block id).

• Thus it is a unified device-independent cache across
all devices.

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• This is all for the user referring to an I/O device
(/dev/*).

• Note: It is not very different when the user
references a normal file. In that case, we have already
seen how the file system generates a request in the
form of a logical block id, which is then sent to the
driver where the specified file system resides (disk/
CD/…)

Generality of I/O

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Life Cycle of an I/O Request

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary

• Input/Output

‣ The OS Manages Device Usage

‣ Communication

‣ I/O Subsystem

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Next day

• Wrap-up and presentations

27

