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OS role in I/O

• Share the same device across different processes/
users

• User does not see the details of how hardware 
works

• Device-independent interface to provide uniformity 
across devices.
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Talk to Devices

• Communication

‣ Send instructions to the devices

‣ Get the results

• I/O Ports

‣ Dedicated I/O registers for communicating status and requests

• Memory-mapped I/O

‣ Map the registers into address space

‣ Communicate requests through memory operations

• Memory-mapped data “registers” can be larger

‣ Think graphics device
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Memory-mapped I/O

• Can read and write device registers just like normal 
memory.

• However, user programs are NOT typically allowed 
to do these reads/writes.

• The OS has to manage/control these devices.

• The addresses to these devices may not need to go 
through address translation since 

‣ OS is the one accessing them and protection does not need 
to be enforced, and 

‣ there is no swapping/paging for these addresses.
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Consider a disk device …
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Reading sector from disk

Store [Command_Reg], READ_COMMAND
Store [Track_Reg], Track #

Store [Sector_Reg], Sector #

/* Device starts operation */

L:   Load R, [Status_Reg]
      cmp R, 0

      jeq 

/* Data now on memory of card */

For i = 1 to sectorsize
     Memtarget[i] = MemOnCard[i]

You don’t want to do this!
Instead, block/switch to 
other process and let an 
interrupt wake you up.

This is again a lot of 
overhead to ask the main

CPU to do!
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Interrupt Cycle



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

DMA engine
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Store [Command_Reg], READ_COMMAND
Store [Track_Reg], Track #

Store [Sector_Reg], Sector #
Store [Memory_Address_Reg], Address

/* Device starts operation */

P(disk_request);

/* Operation complete and data is 
    now in required memory locations*/

ISR() {
    V(disk_request);

}

Called when DMA raises
interrupt after 

Completion of transfer

Assuming an
integrated DMA & 

disk controller.
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Issues to consider

• What is purpose of RAM on card?

‣ To address the speed mismatch between the bit stream coming from 
disk and the transfer to main memory.

• When we program the DMA engine with address of transfer 
(Store [Memory_Address_Reg], Address), is Address virtual or 
physical?

‣ It has to be a physical address, since the addresses generated by the 
DMA do NOT go through the MMU (address translation).

‣ But since it is the OS programming the DMA, this is available and it is 
NOT a problem.

‣ You do NOT want to give this option to user programs.

‣ Also, the address needs to be “pinned” (cannot be evicted) in memory.
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I/O Devices

• Block devices:

‣ usually stores information in fixed size blocks

‣ you read or write an individual block independently of 
others by giving it an address.

‣ E.g., disks, tapes, …

• Character devices:

‣ delivers or accepts streams of characters

‣ Not addressable. 

‣ E.g., terminals, printers, mouse, network interface.
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Principles of I/O Software

• Provide device independence:

‣ same programs should work with different devices.

‣ uniform naming -- i.e., name shouldn't depend on the device.

‣ error handling, handle it as low as possible and only if 
unavoidable pass it on higher.

‣ synchronous (blocking) vs. asynchronous (interrupt 
driven).	
 Even though I/O devices are usually async, sync is 
easier to program
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Device Characteristics
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I/O Software

• A layered approach:

– Lowest layer (device dependent): Device drivers

– Middle layer: Device independent OS software

– High level: User-level software/libraries

• The first 2 are part of the kernel.
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Device Drivers

• Accept abstract requests from device-independent 
OS software, and service those requests.

• There is a device driver for each “device”

• However, the interface to all device drivers is the 
same.

‣ Open(), close(), read(), write(), interrupt(), ioctl(), …
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Disk driver
Semaphore request;

Open() { ….}

Close() { … }

Read() {
    ….

   program the device
   P(request);

   …
}

Write() { …. }

Interrupt() {
   check what caused the interrupt

   case disk_read: V(request);
                    …

}
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Device-independent OS Layer

• Device naming and protection

‣ Each device is given a (major #,minor #) – present in the i-
node for that device

‣ Major # identifies the driver

‣ Minor # is passed on to the driver (to handle sub-devices)

• Does buffering/caching

• Uses a device-independent block size

• Handles error reporting in a device-independent 
fashion.
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Putting things together (UNIX)

• User calls open(“/dev/tty0”,”w”) which is a system 
call.

• OS traverses file system to find the i-node of tty0.

• This should contain the (major #, minor #).

• Check permissions to make sure it is allowed.

• An entry is created in OFDT, and a handle is returned 
to the user.

• When user calls write(fd, ….) subsequently, index 
into OFDT, get major/minor #s.
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I/O and Kernel Objects
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Getting to the driver routine

Open_fp;
Close_fp;
Read_fp;
Write_fp;

….
Open_fp;
Close_fp;
Read_fp;
Write_fp;

….
Open_fp;
Close_fp;
Read_fp;
Write_fp;

….

Major #

Open() {…}
Close() {…}
Read() {…}
Write() {…}

….

Open() {…}
Close() {…}
Read() {…}
Write() {…}

….

In Memory Data Struct

Driver codes supplied by h/w vendors
Linked (needs kernel reboot for

Installation) or dynamically loaded into
Kernel.
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• Copy the bytes pointed to by the pointer given by 
user, into a kernel “pinned” (which is not going to be 
paged out) buffer. 

• Use the above data structure, to find the relevant 
driver’s write() routine, and call it with the pinned 
buffer address, and other relevant parameters.

• For a write, one can possibly return back to user 
even if the write has not propagated. On a read (for 
an input device), the driver would program the 
device, and block the activity till the interrupt.

Driver I/O
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Block Devices

• Previous description was for character device

• In a block device, before calling the driver, check the 
buffer cache that the OS is maintaining to see if the 
request can be satisfied before going to the driver 
itself.

• The lookup is done based on 
(major #, logical block id).

• Thus it is a unified device-independent cache across 
all devices.
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• This is all for the user referring to an I/O device 
(/dev/*).

• Note: It is not very different when the user 
references a normal file. In that case, we have already 
seen how the file system generates a request in the 
form of a logical block id, which is then sent to the 
driver where the specified file system resides (disk/
CD/…)

Generality of I/O
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Life Cycle of an I/O Request
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Summary

• Input/Output

‣ The OS Manages Device Usage

‣ Communication

‣ I/O Subsystem
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Next day

• Wrap-up and presentations
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