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ABSTRACT
Many datasets of interest today are best described as a
linked collection of interrelated objects. These may repre-
sent homogeneous networks, in which there is a single-object
type and link type, or richer, heterogeneous networks, in
which there may be multiple object and link types (and
possibly other semantic information). Examples of homo-
geneous networks include single mode social networks, such
as people connected by friendship links, or the WWW, a
collection of linked web pages. Examples of heterogeneous
networks include those in medical domains describing pa-
tients, diseases, treatments and contacts, or in bibliographic
domains describing publications, authors, and venues. Link
mining refers to data mining techniques that explicitly con-
sider these links when building predictive or descriptive mod-
els of the linked data. Commonly addressed link mining
tasks include object ranking, group detection, collective clas-
sification, link prediction and subgraph discovery. While
network analysis has been studied in depth in particular ar-
eas such as social network analysis, hypertext mining, and
web analysis, only recently has there been a cross-fertilization
of ideas among these different communities. This is an ex-
citing, rapidly expanding area. In this article, we review
some of the common emerging themes.

1. INTRODUCTION
“Links,” or more generically relationships, among data in-
stances are ubiquitous. These links often exhibit patterns
that can indicate properties of the data instances such as the
importance, rank, or category of the object. In some cases,
not all links will be observed; therefore, we may be inter-
ested in predicting the existence of links between instances.
In other domains, where the links are evolving over time, our
goal may be to predict whether a link will exist in the future,
given the previously observed links. By taking links into ac-
count, more complex patterns arise as well. This leads to
other challenges focused on discovering substructures, such
as communities, groups, or common subgraphs.

Traditional data mining algorithms such as association rule
mining, market basket analysis, and cluster analysis com-
monly attempt to find patterns in a dataset characterized
by a collection of independent instances of a single rela-
tion. This is consistent with the classical statistical infer-
ence problem of trying to identify a model given a indepen-
dent, identically distributed (IID) sample. One can think of

this process as learning a model for the node attributes of
a homogeneous graph while ignoring the links between the
nodes.

A key emerging challenge for data mining is tackling the
problem of mining richly structured, heterogeneous datasets.
These kinds of datasets are best described as networks or
graphs. The domains often consist of a variety of object
types; the objects can be linked in a variety of ways. Thus,
the graph may have different node and edge (or hyperedge)
types. Naively applying traditional statistical inference pro-
cedures, which assume that instances are independent, can
lead to inappropriate conclusions about the data [57]. Care
must be taken that potential correlations due to links are
handled appropriately. In fact, object linkage is knowledge
that should be exploited. This information can be used to
improve the predictive accuracy of the learned models: at-
tributes of linked objects are often correlated, and links are
more likely to exist between objects that have some com-
monality. In addition, the graph structure itself may be
an important element to include in the model. Structural
properties such as degree and connectivity can be important
indicators.
Link mining is a newly emerging research area that is at the
intersection of the work in link analysis [58; 40], hypertext
and web mining [16], relational learning and inductive logic
programming [38], and graph mining [23]. We use the term
link mining to put a special emphasis on the links—moving
them up to first-class citizens in the data analysis endeavor.
In recent years, there have been several workshop series de-
voted to topics related to link mining. One of the earliest
workshops was the 1998 AAAI Fall Symposium on AI and
Link Analysis [58]. Other workshop series include the work-
shops on Statistical Relational Learning [48; 49; 28], Multi-
Relational Data Mining [65; 39; 36; 37], LinkKDD [35; 1;
3], Link Analysis, Counter-terrorism and Security [104; 26;
103], and Mining Graphs, Trees and Sequences [94; 66; 85].
The objective of this survey is to provide a perspective on re-
search within the relevant communities that are addressing
current link mining challenges. Link mining encompasses a
wide range of tasks; therefore, our review will cover the core
challenges addressed by a majority of ongoing research in the
field. We begin by describing some of the challenges in data
representation for link mining. Then we progress through
eight link mining tasks that can be broadly categorized as
tasks that focus on objects, links, or graphs (Table 1). Fi-
nally, we close with a discussion of areas that we believe
have not yet received sufficient attention.
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Table 1: A taxonomy of common link mining tasks.

1. Object-Related Tasks

(a) Link-Based Object Ranking

(b) Link-Based Object Classification

(c) Object Clustering (Group Detection)

(d) Object Identification (Entity Resolution)

2. Link-Related Tasks

(a) Link Prediction

3. Graph-Related Tasks

(a) Subgraph Discovery

(b) Graph Classification

(c) Generative Models for Graphs

2. DATA REPRESENTATION
While data representation and feature selection are signifi-
cant issues for traditional machine learning algorithms, data
representation for linked data is even more complex. Con-
sider a simple example from Singh et al. [101] of a social
network describing actors and their participation in events.
Such social networks are commonly called affiliation net-
works [112], and are easily represented by three tables rep-
resenting the actors, the events, and the participation re-
lationships. Even this simple structure can be represented
as several distinct graphs. The most natural representa-
tion is a bipartite graph, with a set of actor nodes, a set of
event nodes, and edges that represent an actor’s participa-
tion in an event. Other representations may enable different
insights and analysis. For example, we may construct a net-
work in which the actors are nodes and edges correspond to
actors who have participated in an event together. This rep-
resentation allows us to perform a more actor-centric anal-
ysis. Alternatively, we may represent these relations as a
graph in which the events are nodes, and events are linked
if they have an actor in common. This representation may
allow us to more easily see connections between events.
This flexibility in the representation of a graph arises from
a basic graph representation duality. This duality is illus-
trated by the following simple example: Consider a data
set represented as a simple G = (0,L), where 0 is the set
of objects (i.e., the nodes or vertices) and L is the set of
links (i.e., the edges or hyperedges). The graph G(0,L) can
be transformed into a new graph G′(0′,L′), in which the
links li, lj in G are objects in G′ and there exists an link
between oi, oj ∈ 0

′ if and only if li and lj share an ob-
ject in G. This basic graph duality illustrates one kind of
simple data representation transformation. For graphs with
multiple node and edge types, the number of possible trans-
formations becomes immense. Typically, these reformula-
tions are not considered as part of the link mining process.
However, the representation chosen can have a significant
impact on the quality of the statistical inferences that can
be made. Therefore, the choice of an appropriate represen-
tation is actually an important issue in effective link mining,
and is often more complex than in the case where we have
IID data instances. In the following sections, we will assume

that a data representation has been selected, that the desig-
nation of the objects or nodes in the graph has been made,
and that the links or edges in the graph have been defined.
However, when applying link mining to real world domains,
one should not underestimate the effort required in choosing
an appropriate representation.

3. LINK-BASED OBJECT RANKING
Perhaps the most well known link mining task is that of
link-based object ranking (LBR), which is a primary focus
of the link analysis community. The objective of LBR is to
exploit the link structure of a graph to order or prioritize
the set of objects within the graph. Much of this research
focuses on graphs with a single object type and a single link
type.
In the context of web information retrieval, the PageRank
[91] and HITS [64] algorithms are the most notable ap-
proaches to LBR. PageRank models web surfing as a ran-
dom walk where the surfer randomly selects and follows links
and occasionally jumps to a new web page to start another
traversal of the link structure. The rank of a given web page
in this context is the fraction of time that the random web
surfer would spend at the page if the random process were
iterated ad infinitum. This can be determined by computing
the steady-state distribution of the random process.
HITS assumes a slightly more complex process, modeling
the web as being composed of two types of web pages: hubs
and authorities. Hubs are web pages that link to many au-
thoritative pages. Authorities are web pages that are linked
to by many hubs. Each page in the web is assigned hub
and authority scores. These scores are computed by an it-
erative algorithm that updates the scores of a page based
on the scores of pages in its immediate neighborhood. This
approach bears a relation to PageRank with two separate
random walks—one with hub transitions and one with au-
thority transitions—on a corresponding bipartite graph of
hubs and authorities [73; 95; 84]. The hub and authority
scores are the steady-state distributions of the respective
random processes.
Since the introduction of PageRank and HITS, a number of
algorithms have been proposed that are variations on these
basic themes. Bharat and Henzinger [8] and Chakrabarti et
al. [17] propose modifications to HITS that exploit web page
content to weight pages and links based on relevance. Ng et
al. [83; 84] analyze the stability of PageRank and HITS to
small perturbations in the link structure and present mod-
ifications to HITS that yield more stable rankings. Haveli-
wala [51] and Jeh and Widom [56] propose topic-sensitive
PageRank algorithms that identify topically authoritative
web pages efficiently at query time. Ding et al. [29] pro-
poses a unified framework encompassing both PageRank and
HITS and presents several new ranking algorithms within
this algorithm class with closed-form solutions. Cohn and
Chang [20] introduce a probabilistic analogue to HITS based
on probabilistic latent semantic indexing, where the model
attempts to explain the link structure in terms of a small
set of latent factors. Cohn and Hofmann [21] and Richard-
son and Domingos [98] present probabilistic models inspired
by HITS and PageRank, respectively, that incorporate both
content and link structure.
In the domain of social network analysis (SNA), LBR is a
core analysis task. The objective is to rank order individu-
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als in a given social network in terms of a measure of their
importance, referred to as centrality. Measures of centrality
have been the subject of research in the SNA community for
decades [112]. These measures characterize some aspect of
the local or global network structure as seen from a given in-
dividual’s position in the network. They range in complexity
from local measures such as degree centrality [43], which is
simply the vertex degree, to global measures such as eigen-
vector/power centrality [12], which use spectral methods to
characterize the importance of individuals based on their
connectedness to other important individuals.

In the above work, the common goal is a global ranking
of objects in a static graph produced using a specified mea-
sure. Notable variations from this theme include approaches
that rank objects relative to one or more relevant objects
in the graph [55; 114; 105] and methods that rank objects
over time in dynamic graphs [89; 88]. Jeh and Widom [55]
propose a metric for assessing the similarity of two objects
based on the degree to which they link to similar objects.
The similarity between two objects in a directed or bipartite
graph is computed using a random walk formulation. Sun
et al. [105] in this issue propose a related object ranking
approach for relevance search and anomaly detection that
combines random walks and graph partitioning to improve
scalability. White and Smyth [114] define and evaluate a
host of metrics to compute the similarity between a given
object and one or more reference objects in a graph.

Ranking objects in dynamic graphs that capture event data
such as email, telephone calls, or publications introduces
new challenges. In contrast to ranking methods for static
settings that produce a single rank, the goal is to track the
changes in object rank over time as new events unfold. Static
ranking methods can be applied to aggregated event data
over various time intervals, but this aggregation removes
the time ordering of events, and the sparse link structure
over a given time interval limits the utility of the resulting
ranks. O’Madadhain and Smyth [89] and O’Madadhain et
al.[88] in this issue propose a series of desired algorithmic
properties for dynamic object ranking, discuss the limita-
tions of notable static ranking algorithms, and introduce a
ranking algorithm based on potential flow that satisfies the
specified requirements.

4. LINK-BASED OBJECT CLASSIFICATION
Traditional machine learning has focused on the classifica-
tion of data consisting of identically structured objects that
are typically assumed to be IID. Many real-world datasets,
however, lack this homogeneity of structure. In the link-
based object classification (LBC) problem, a data graph
G = (0,L) is composed of a set objects 0 connected to each
other via a set of links L. The task is to label the members
of 0 from a finite set of categorical values. The discerning
feature of LBC that makes it different from traditional clas-
sification is that in many cases, the labels of related objects
tend to be correlated. The challenge is to design algorithms
for collective classification that exploit such correlations and
jointly infer the categorical values associated with the ob-
jects in the graph.

LBC has received considerable attention recently. Chakra-
barti et al. [18] consider the problem of classifying related
news items in the Reuters dataset. They were among the
first to notice that exploiting class labels of related objects

aids classification, whereas exploiting features of related ob-
jects can actually harm classification accuracy. Oh et al. [87]
report similar results on a collection of encyclopedia arti-
cles: simply incorporating words from neighboring docu-
ments was not helpful, while making use of the predicted
class of neighboring documents was helpful. Lafferty et
al. [71] introduce conditional random fields (CRF), which
extend traditional maximum entropy models for LBC in the
restricted case where the data graphs are chains. Taskar et
al. [107] extend Lafferty et al.’s approach [71] to the case
where the data graphs are arbitrary graphs. Neville and
Jensen [80] propose simple LBC algorithms to classify cor-
porate datasets with rich schemas that produce graphs with
heterogeneous objects, each with its own distinct set of fea-
tures. Lu and Getoor [76] extend simple machine learn-
ing classifiers to perform LBC by introducing new features
that measure the distribution of class labels in the Markov
blanket of the object to be classified. In addition to the
machine learning community, the computer vision and nat-
ural language communities have also studied the LBC prob-
lem. Rosenfeld et al. [99] proposed relaxation labeling, an
inference algorithm later used by Chakrabarti et al. [18] to
perform link-based classification. Hummel and Zucker [53]
present one of many approaches for exploring relaxation la-
beling theoretically. Lafferty et al. [71] proposed CRFs for
use in part-of-speech tagging, a task in natural language
processing.

5. GROUP DETECTION
A third object-centric task is group detection. The goal of
group detection is to cluster the nodes in the graph into
groups that share common characteristics. A range of tech-
niques have been presented in various communities to ad-
dress this general problem. In recent years, a central chal-
lenge has been to develop scalable methods that can exploit
increasingly complex graphs to aid the knowledge discovery
process.

Consider first the case where the graph contains objects and
links of a single type, without attributes. Many of the tech-
niques for identifying groups in this scenario can be classified
as either agglomerative or divisive clustering methods. The
task of blockmodeling of social network analysis (SNA) in-
volves partitioning social networks into sets of individuals,
called positions, that exhibit similar sets of links to others in
the network [112]. A similarity measure is defined between
link sets and agglomerative clustering is used to identify the
positions. Spectral graph partitioning methods address the
group detection problem by identifying an approximately
minimal set of links to remove from the graph to achieve
a given number of groups [82; 30]. In a related vein, Gib-
son et al. [50] have shown that the dominant eigenvectors
of the HITS authority matrix provide a natural decomposi-
tion of web community structure. Other recent approaches
for group detection use a measure of edge betweenness, de-
rived from Freeman’s notion of betweenness centrality [43],
to identify links connecting groups [109]. Links with high
edge betweenness are incrementally removed to partition the
graph.

In contrast to the above methods, where group assignments
are deterministic, a number of approaches for group detec-
tion have been introduced that are based on the concept of
stochastic blockmodeling from SNA. In stochastic blockmod-
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eling, the observed social network is assumed to be a realiza-
tion from a pair-dependent stochastic blockmodel [112; 86].
Positions for the individuals in the network are treated as
IID random variables, and relational links of a given type be-
tween two individuals are random variables dependent solely
on the positions of the individuals they link. Nowicki and
Snijders [86] propose a general stochastic blockmodelling ap-
proach admitting directed, valued relations and an arbitrary
number of positions. Gibbs sampling is used to infer the pos-
terior distribution for positions. Kemp et al. [61] remove the
need to specify the number of positions a priori; instead, the
number of positions is inferred directly from the data. Wolfe
and Jensen [115] extend the general stochastic blockmod-
elling approach by allowing an individual to have multiple
position types; this provides the flexibility to model multiple
roles that an individual may have in different contexts.

To address group detection challenges in the intelligence
and law enforcement domains, methods are needed that can
exploit volumes of multi-relational data to detect indica-
tors of collaboration. Several recent efforts have proposed
methods to address such challenges. Adibi et al. [2] pro-
pose a hybrid approach that initially posits potential groups
using knowledge-based reasoning techniques and then aug-
ments these hypotheses with additional candidates based on
observed interactions that indicate likely association. Ku-
bica et al. [69] presents a generative model for multi-type
link generation given group membership and individual at-
tribute information. Maximum likelihood estimation is used
to identify the most likely chart mapping individuals to their
respective group memberships. In later work Kubica et
al. [68] introduce a scalable version of this approach that
uses a method similar to k-means clustering to significantly
accelerate group discovery, while retaining the underlying
generative model. Most recently, Wang et al. [110] propose
a generalization of the general stochastic blockmodelling ap-
proach that allows joint inference of groups and topics based
on observed relationships and their textual attributes. Such
a model provides a mechanism to connect an observed rela-
tionship with its underlying context.

6. ENTITY RESOLUTION
The final object-centric task is entity resolution, which in-
volves identifying the set of objects in a domain. The goal of
entity resolution is to determine which references in the data
refer to the same real-world entity. Examples of this problem
arise in databases (deduplication, data integration), natural
language processing (co-reference resolution, object consoli-
dation), personal information management, and other fields.
The problem has been defined with many variations; in the
most general form, neither the domain entities nor the num-
ber of such entities is assumed to be known. Traditionally,
entity resolution has been viewed as a pair-wise resolution
problem, where each pair of references is independently re-
solved as being co-referent or otherwise, depending on the
similarity of their attributes. Recently, there has been sig-
nificant interest in the use of links for improved entity res-
olution. The central idea is to consider, in addition to the
attributes of the references to be resolved, the other refer-
ences to which these are linked. These links may be, for
example, co-author links between author references in bibli-
ographic data, hierarchical links between spatial references
in geo-spatial data, or co-occurrence links between name ref-
erences in natural language documents.

The use of links for resolution was first explored in databases.
Ananthakrishna et al. [6] introduce a method for deduplica-
tion using links in data warehouse applications where there
is a dimensional hierarchy over the link relations. More re-
cently, Kalashnikov et al. [59] enhance feature-based sim-
ilarity between an ambiguous reference and the many en-
tity choices for it with linkage analysis between the entities,
such as affiliation and co-authorship. However, while these
approaches consider links for entity resolution, only the at-
tributes of linked references are considered and different res-
olution decisions are still taken independently.

In contrast, collective entity resolution approaches have also
been proposed in databases [9; 34], where one resolution
decision affects another if they are linked. Bhattacharya
and Getoor [9; 10] propose different measures for linkage
similarity in graphs and show how these can be combined
with attribute similarity for collective entity resolution in
collaboration graphs. Dong et al. [34] collectively resolve
entities of multiple types by propagating evidence over links
in a dependency graph.

In machine learning, probabilistic models that take into ac-
count interaction between different entity resolution deci-
sions have been proposed for named entity recognition in
natural language processing and for citation matching. Li
et al. [74] address the problem of disambiguating “entity
mentions,” potentially of multiple types, in the context of
unstructured textual documents. Parag et al. [102] use the
idea of merging evidence to allow the flow of reasoning be-
tween linked pair-wise decisions over multiple entity types.

In addition, models have been proposed that explicitly con-
sider links among references for collective resolution [92; 11;
25]. Pasula et al. [92] propose a generic probabilistic rela-
tional model framework for the citation matching problem.
Culotta and McCallum [25] construct a conditional random
field model of deduplication that captures linked dependen-
cies between references of multiple types. Bhattacharya et
al. [11] adapt the Latent Dirichlet model for documents and
topics and extend it to propose a generative group model
for unsupervised collective entity resolution.

7. LINK PREDICTION
We next turn to edge-related tasks. Link prediction is the
problem of predicting the existence of a link between two en-
tities, based on attributes of the objects and other observed
links. Examples include predicting links among actors in
social networks, such as predicting friendships; predicting
the participation of actors in events [88], such as email, tele-
phone calls and co-authorship; and predicting semantic rela-
tionships such as “advisor-of” based on web page links and
content [24; 108]. Most often, some links are observed, and
one is attempting to predict unobserved links, or there is a
temporal aspect: a snapshot of the set of links at time t is
given and the goal is to predict the links at time t + 1.
This problem is often viewed as a simple binary classifica-
tion problem: for any two potentially linked objects oi and
oj , predict whether lijis1 or 0. One approach is to make
this prediction entirely based on structural properties of the
network. Liben-Nowell and Kleinberg [75] present a survey
of predictors based on different graph proximity measures.
Other approaches make use of attribute information for link
prediction. Popescul et al. [93] introduce a structured logis-
tic regression model that can make use of relational features
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to predict the existence of links. The relational features are
defined via database queries; the authors show how to search
over the space of relational features. O’Madadhain et al. [88;
90] construct local conditional probability models, based on
attribute and structural features.

Link prediction is hard because most interesting linked data
sets are sparse. As pointed out by many researchers [46;
88; 97], one of the difficulties in building statistical models
for edge prediction is that the prior probability of a link is
typically quite small. This causes difficulty both in model
evaluation and, more importantly, in quantifying the level
of confidence in the predictions. Rattigan and Jensen [97]
in this issue discuss some of these challenges.
One way to improve the quality of the predictions is to make
the predictions collectively. A number of approaches define
a single probabilistic model over the entire link graph, la-
bels, and edges. These joint models of network structure
are often based on models such as Markov random fields
[19]. In the simplest case, where there is a set of objects
O, with attributes X, and edges E among the objects, the
MRF models a joint distribution over the set of edges E,
P (E), or a distribution conditioned on the attributes of the
nodes, P (E|X). Richer models, based on relational rep-
resentations, are possible, such as Relational Markov Net-
works [108] and, more recently, Markov Logic Networks [33].
Models based on directed graphical models are also possible.
Getoor et al. [47] describe several approaches for handling
link uncertainty in probabilistic relational models.
A discerning feature of these latter approaches is that they
perform probabilistic inference to make inferences about the
links. This allows them to capture the correlations among
the links. They can also be used for other tasks, such as link-
based classification. Ideally this makes for more accurate
predictions. However, model-based probabilistic approaches
have a computational price: exact inference is generally in-
tractable, so approximate inference techniques are necessary.

8. SUBGRAPH DISCOVERY
An area of data mining that is related to link mining is
the work on subgraph discovery. This work attempts to
find interesting or commonly occurring subgraphs in a set of
graphs. Discovery of these patterns may be the sole purpose
of the systems, or the discovered patterns may be used for
graph classification (Section 9).
One line of work attempts to find frequent subgraphs [54;
70; 116]. Many of these approaches exploit the Apriori prop-
erty [4] from frequent item set mining. Typically, there is
a candidate generation phase followed by a matching phase.
Naive matching requires a subgraph isomorphism test, so
efficient algorithms are needed here as well. Inokuchi et
al. [54] describe AGM, an Apriori-based algorithm that finds
all induced subgraphs in a graph database satisfying a min-
imum support. Kuromachi et al. [70] improve on AGM by
using an adjacency representation of the graph data and de-
scribing new optimizations to candidate substructure gener-
ation. Yan et al. [116] describe gSpan, which avoids the cost
of candidate generation by first mapping each graph to a
depth-first search code and lexicographically ordering these
codes, then performing DFS on the search tree defined by
this lexicographic ordering.
Other approaches come from the inductive logic program-
ming (ILP) community [79; 72]. One early success was the

work of Dehaspe et al. [27], who applied techniques from
inductive logic programming to finding frequent patterns in
a toxicology domain.
Another line of work focuses on efficient subgraph genera-
tion and compression-based heuristic search [22; 78]. Sub-
due [22], the earliest work in this area, uses an MDL-based
heuristic to guide the search for subgraphs. Subdue has
been used for both subgraph discovery and graph classifi-
cation [23]. As another example, Graph-Based Induction
(GBI) compresses the input graph by chunking the vertex
pairs that appear frequently [117]. Both of these approaches
use a greedy local approach in their search for frequent sub-
structures. Ketkar et al. [62] compare these approaches to
ILP approaches.

9. GRAPH CLASSIFICATION
Unlike link-based object classification, which attempts to
label nodes in a graph, graph classification is a supervised
learning problem in which the goal is to categorize an entire
graph as a positive or negative instance of a concept. This
is one of the earliest tasks addressed within the context of
applying machine learning and data mining techniques to
graph data. Graph classification does not typically require
collective inference, as is needed for classifying objects and
edges, because the graphs are generally assumed to be inde-
pendently generated.
Three main approaches to graph classification have been ex-
plored. These are based on feature mining on graphs, induc-
tive logic programming (ILP), and defining graph kernels.
Feature mining on graphs uses methods related to those de-
scribed in the previous section on subgraph discovery, Sec-
tion 8. Feature mining on graphs is usually performed by
finding all frequent or informative substructures in the graph
instances. These substructures are used for transforming the
graph data into data represented as a single table, and then
traditional classifiers are used for classifying the instances.
As an example of an ILP approach, King et al. [63] first map
the graph data describing mutagenesis into a relational rep-
resentation. Their logical representation uses relations such
as vertex(graphId,VertexId,VertexLabel, VertexAttributes) and
edge(graphId,vertexId1,vertexId2,BondLabel), and then uses
an ILP system to find a hypothesis in this space.

Finding all frequent substructures is usually computation-
ally prohibitive. An alternative approach makes use of ker-
nel methods. Both Gärtner and Kashima describe graph
kernels based on a measure of the walks on the graphs [44;
60]. Gärtner [44] counts walks with equal initial and termi-
nal labels, whereas Kashima [60] looks at the probability of
random walks with equal label sequences. A Gärtner [45]
surveys kernel methods for structured data.

10. GENERATIVE MODELS FOR GRAPHS
Generative models for a range of graph and dependency
types have been studied extensively in the social network
analysis community. For directed graphs with a single ob-
ject and link type, there are several major classes of random
graph distributions discussed in the literature: Bernoulli
graph distributions, conditional uniform graph distributions,
dyadic dependence distributions, and p∗ models. Bernoulli
graphs [41] (also known as Erdös-Rényi models or random
graphs) are by far the simplest generative models. They
assume that the random variables {lij} that indicate the
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existence of directed edges among the objects oi and oj are
IID. When the probability of link existence equals 0.5, the
distribution is often referred to as the uniform random graph
distribution. Conditional uniform graph distributions [112]
define uniform distributions over sets of graphs with spec-
ified structural characteristics, such as a fixed number of
links, out-degrees, or in-degrees. Dyadic dependence distri-
butions [111] assume that only the dyads (lij , lji) are de-
pendent and define multinomial distributions over the dyad
states. P∗ models assume that links sharing at least one
object in common are dependent. Generative models ad-
mitting dependency structures that are more general than
Markov graphs have been introduced as well, along with
models for multiple object and link types and dynamic net-
works with a varying link structure and number of objects
[14; 52].

In recent years, significant attention has focused on studying
the structural properties of networks such as the World Wide
Web, online social networks, communication networks, cita-
tion networks, and biological networks. Across these various
networks, general patterns such as power law degree distri-
butions, small graph diameters, and community structure
are observed. These observations have motivated the search
for general principles governing such networks [15]. Airoldi
et al. [5] in this issue review sampling algorithms for a num-
ber of the common network types such as scale free networks
[7], small-world networks [113], core-periphery [13], and cel-
lular networks [42] that exhibit such attributes. In contrast
to the random process models from the social network anal-
ysis literature, many of these generative models are specified
in procedural form, which is viewed as beneficial when the
goal is to understand how power law degree distributions, for
example, can naturally emerge in dynamic graphs over time.
Chakrabarti [15] presents a taxonomy of recently proposed
graph generators.
Finally, we note several generative models of link structure
presented in the machine learning community that address
a variety of application contexts. Kubica et al. [69] intro-
duces a generative model for observed links among individ-
uals given their underlying group memberships. Kubica et
al. [67] present a link generation model for link analysis and
collaboration queries that admits different link types and
temporal information. Getoor et al. [47] introduce proba-
bilistic relational models, which that provide a unified gen-
erative model for objects and link structure. Neville and
Jensen [81] define a probabilistic relational model that rep-
resents a joint distribution over objects, links and latent
groups.

11. OPEN ISSUES AND PROMISING
AREAS FOR FUTURE RESEARCH

In this survey, we have often described each link mining task
in isolation. More generally, component link mining algo-
rithms may be part of a larger knowledge discovery process.
As we move from one domain to another, the processing
requirements will change, but the need to compose the algo-
rithms in a unified process will remain. Ideally, as we move
from data conditioning to more complex inference tasks, we
would like to propagate uncertainty throughout the process.
One approach that solves this problem, in theory, is to de-
fine a full probabilistic model; this the approach taken by
Getoor et al. [47] and Taskar et al. [108]. However, this

approach is not always desirable or feasible. As argued by
Senator [100] in this issue, in addition to addressing spe-
cific link mining tasks, it is equally important to consider
how to effectively compose link mining algorithms to ad-
dress a spectrum of knowledge discovery tasks. Ultimately,
system performance is determined by the interplay among
the components; therefore, it is critical to investigate how
these component dependencies will shape the overall perfor-
mance.
When considering the overall knowledge discovery process,
it is important to keep in mind that many aspects of the pro-
cess are dynamic. The dynamism, which can extend from
the data to the user’s needs, interests, and beliefs, implies
that a number of link mining algorithms will be applied re-
peatedly and incrementally. We often envision applying link
mining algorithms to the entire graph. While this is desir-
able in some applications, it does not make sense when a
user is interested in only a small subgraph. Therefore, it
is important to develop methods supporting focused, incre-
mental application of link mining.

One interesting research direction in this area is query-based
classification using links. Most collective classification ap-
proaches consider the dataset in its entirety as one linked
instance of objects, performing prediction/classification for
all of these objects jointly. When a user is interested in
classifying only a small subset of these objects, it is worth-
while to classify other objects only if they are helpful in
correctly classifying the objects of interest via the link struc-
ture. Given this goal, a query-based collective inference
technique needs to first extract the links and objects that
are most relevant for answering the query approximately and
then perform collective classification only on the extracted
subgraph. Identification of relevant subgraphs can also be
helpful for incremental classification when new objects and
links are added to an existing graph with classified objects.

Link mining often needs to be performed on data from mul-
tiple sources; therefore, information integration and recon-
ciliation are important components of the link mining pro-
cess. Furthermore, it is important to integrate the data
(re)formulation more directly into the link process process.
While there has been some work that integrates the statisti-
cal approaches to link mining with the meta-data discovery
and mapping [31], there is much more to be done.

Another promising arena in which to apply link mining is the
Semantic Web. In this issue, Ramakrishnan et al. [96] de-
scribe methods for discovering interesting subgraphs based
on semantic information associated with the edges. There
has been some other work in this area, for example Mad-
che and Staab [77] and Doan et al. [32], but there is much
more to be done. As information extraction techniques con-
tinue to improve, one area for future research is combining
information extraction with techniques from link mining to
help to construct the Semantic Web, and another area for
future research is how semantic and ontological information
can help in link mining endeavors.

As the amount of data grows and the number of sources
expands, techniques from link mining can help us discover
patterns and build useful prediction systems. Link mining
research holds promise for many different areas, including
commercial and business enterprises, personal information
management, web search and retrieval, medicine and bio-
informatics, and law and security enforcement. However,
as cautioned by Sweeney [106], as we develop this technol-
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ogy, privacy and information-access control issues and policy
must be considered, not just as an afterthought, but as an
integral part of the solution.

12. CONCLUSION
More and more domains of interest today are best described
as a linked collection or network of interrelated heteroge-
neous objects. Data mining algorithms have typically ad-
dressed the discovery of patterns in collections of IID in-
stances. Link mining is an emerging area within data min-
ing that is focused on finding patterns in data by exploiting
and explicitly modeling the links among the data instances.
We have surveyed several of the more well studied link min-
ing tasks: link-based object ranking, link-based object clas-
sification, group detection, entity resolution, link predic-
tion, subgraph discovery, graph classification, and genera-
tive models for graphs. These represent some of the common
threads emerging from a variety of fields that are exploring
this exciting and rapidly expanding field.
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