CIS 122

Types, Types and More Types

Integers

- Whole numbers (positive or negative)
- 1
- - 7
- 42
- - 525600
- What about these?
$0+1$
- --7
- +-+-+42

Integers

-What can you do with them?

- add
$(2+3)$
- subtract
(5-12)
- multiply
(4*5)
- divide
(5 / 3)
- exponentiate (2 ** 4)
- Spacing is optional
- 2+3
- $2+$
- Avoid leading spaces, though...

Integers

- Integer operations always yield integer results
- Easy for addition, subtraction, multiplication
- What about division?

Integers

- Integer operations always yield integer results - Easy for addition, subtraction, multiplication - What about division?

$5 / 2$

2.5

2

- Just chop off the non-integer part!
- (rounding down)

Integers

- Standard order of operations
- Parentheses
- Exponents
- Multiplication / Division
- Addition / Subtraction
- PEMDAS (Please Excuse My Dear Aunt Sally)
- A little misleading...
- Multiplication and Division have the same priority
- Addition and Subtraction have the same priority
- In ties, evaluate from left to right

Integers - Pop Quiz

- $5 / 2$
- 99 / 100
- $1+2$ * 3
- $(1+2)$ * 3
-6-3+3
- 8 * 3 / 4
- 8 * (3/4)

Integers - Pop Quiz

- $5 / 2$

2

- 99 / 100
- $1+2$ * 3

7

- $(1+2)$ * 3

9

- 6-3+3 6
- 8 * 3 / 4

6

- 8 * (3/4)

0

Floats

- Short for "Floating Point Numbers" - Name comes from representation
- Allow us to represent fractional numbers
- Any number with a '.'
- 1.2
-0.0
- 12345
- 42.

Floats

- Floats can do just about anything an integer can do
- 1.1 + 2.3
- 0.5 * 10.0
- What about this one?
- $0.1+0.2$
- Floats are imprecise
- Don't worry about the details
- But don't be alarmed if your calculations are a little off

Floats

-What happens when you mix floats and integers?

- 1 + 2.3
- 3.0 * 4

Floats

-What happens when you mix floats and integers?

- 1 + 2.3
- 3.0 * 4
- Python converts the result to a float
- No information lost

Floats

-What happens when you mix floats and integers?

- $1+2.3$
- 3.0 * 4
- Python converts the result to a float - No information lost
- Great for precisely dividing integers

$$
5.0 / 2 \quad 2.5
$$

Strings

-What if we want to read and write messages?

- We could just encode everything numerically... - Actually, that's what happens under the surface
- But it would be a pain for us to read
- Use strings

Strings

- Text surrounded by quotes
- Single quotes
- 'This is a string'
- Double quotes - "So is this"
- Triple quotes (three sets of single/double quotes)
- """This string can span multiple lines"""

Strings

- Strings can even contain quotes (sometimes...)
- "This 'string' is a valid string"
- 'This "string" is also valid'
- "Oops, this "string" cuts off early"
- Everything inside quotes is part of the string
- "\$ 1-a" (this string contains five characters)

○" " " (this string contains one character) (this string contains no characters)

Strings

-What can we do with strings?

- You can add them
- Adding strings is different then adding ints
- "Hello" + "World" \rightarrow "HelloWorld"
- There's a big difference between these expressions
- $1+1$
- '1' + '1'

Strings

-What can we do with strings?

- You can multiply them
- But not by each other...
-What happens when you multiply a string by an integer?
- 'Hip Hip Hooray! ' * 3

○ 'What about me?' * 0

- 'Huh?' * -5
-What if you multiply a string by a float?

Types

- We've seen a few today
- Integers
- Floats
- Strings
- But there are more
- Booleans
- Lists
- And you can even make your own
- Classes
- We'll get to that much later...

