
CIS 122

Recursion Strikes Again

Recursion

● Reducing a problem to a smaller version of itself

● Recursive step
○ How do I reduce my problem?
○ To wash dishes, first wash one dish, then wash the rest
○ x! = x * (x-1)!

● Base Case
○ Where do I stop?
○ When the sink is empty, the dishes are washed
○ 0! = 1

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

Not-So-Basic Arithmetic

● Python can multiply numbers with the * operator
○ But what if we want to implement it ourselves?
○ Let's break out some recursion!

 product(a, b) = a + product(a, b-1)

Not-So-Basic Arithmetic

● Base Case
○ product(a, 0) = 0

● Recursive Step
○ product(a, b) = a + product(a, b-1)

Not-So-Basic Arithmetic

● Base Case
○ product(a, 0) = 0

● Recursive Step
○ product(a, b) = a + product(a, b-1)

 def product(a, b):
 if b==0:
 return 0
 else:
 return a + product(a, b-1)

Not-So-Basic Arithmetic

● Base Case
○ product(a, 0) = 0

● Recursive Step
○ product(a, b) = a + product(a, b-1)

 def product(a, b):
 if b==0:
 return 0
 else:
 return a + product(a, b-1)

● Does it work?
○ Test it!

Not-So-Basic Arithmetic

● Base Case
○ product(a, 0) = 0

● Recursive Step
○ product(a, b) = a + product(a, b-1)

 def product(a, b):
 if b==0:
 return 0
 elif b < 0:
 return -1 * product(a, -b)
 else:
 return a + product(a, b-1)

Not-So-Basic Arithmetic Quiz

● Write a recursive power function
○ power(a, b) = a * a * a * ... * a (b times)
○ (don't worry about negative b)

● Steps
○ Define power recursively
○ Come up with a base case
○ Put it into code

Not-So-Basic Arithmetic Quiz

● Write a recursive power function
○ power(a, b) = a * a * a * ... * a (b times)

● Base Case
○ power(a, 0) = 1

● Recursive Definition
○ power(a, b) = a * power(a, b-1)

 def power(a, b):
 if b == 0:
 return 1
 else:
 return a * power(a, b-1)

Sizing things up

● Python has a built in len function
○ But what if we want to write our own?

● Write a function myLen(string)
○ returns the length of the given string

● What's the base case?
○ The empty string has length 0

● What's the recursive step?
○ Recursively compute length of "rest" of string
○ Our string has length 1 greater

Sizing things up

def myLen(string):
 """Computes length of string"""

 # Base Case
 if string == "":
 return 0

 # Recursive step
 else:
 return 1 + myLen(string[1:])

Where to stop?

● Problem needs to get smaller when you recurse

● factorial
○ The number gets smaller
○ Base case at 0

● product
○ Second number gets smaller
○ Base case at b==0

● length
○ Size of string gets smaller
○ Base case at empty string

