## CIS 122

Recursion Strikes Again

## Recursion

- Reducing a problem to a smaller version of itself
- Recursive step
- How do I reduce my problem?
- To wash dishes, first wash one dish, then wash the rest
o x ! = x * $(\mathrm{x}-1)$ !
- Base Case
- Where do I stop?
- When the sink is empty, the dishes are washed
- $0!=1$


## Not-So-Basic Arithmetic

- Python can multiply numbers with the * operator - But what if we want to implement it ourselves?
- Let's break out some recursion!


## Not-So-Basic Arithmetic

- Python can multiply numbers with the * operator - But what if we want to implement it ourselves?
- Let's break out some recursion!

$$
a^{*} b=\underbrace{a+a+a+a+\ldots+a}_{b}
$$

## Not-So-Basic Arithmetic

- Python can multiply numbers with the * operator - But what if we want to implement it ourselves?
- Let's break out some recursion!

$$
a^{*} b=a+\underbrace{a+a+a+\ldots+a}_{b-1}
$$

## Not-So-Basic Arithmetic

- Python can multiply numbers with the * operator - But what if we want to implement it ourselves?
- Let's break out some recursion!

$$
a * b=a+a *(b-1)
$$

## Not-So-Basic Arithmetic

- Python can multiply numbers with the * operator - But what if we want to implement it ourselves? - Let's break out some recursion!

$$
a * b=a+a *(b-1)
$$

$\operatorname{product}(\mathrm{a}, \mathrm{b})=\mathrm{a}+\operatorname{product}(\mathrm{a}, \mathrm{b}-1)$

## Not-So-Basic Arithmetic

- Base Case
- product(a, 0) $=0$
- Recursive Step
- product $(a, b)=a+\operatorname{product}(a, b-1)$


## Not-So-Basic Arithmetic

- Base Case
o product(a, 0) $=0$
- Recursive Step
- product( $a, b)=a+\operatorname{product}(a, b-1)$
def product(a, b):
if $b==0$ :
return 0
else:
return $a+\operatorname{product}(a, b-1)$


## Not-So-Basic Arithmetic

- Base Case
o product(a, 0) $=0$
- Recursive Step
- product( $a, b)=a+\operatorname{product}(a, b-1)$
def product(a, b):
if $b==0$ :
return 0
else:
return $a+\operatorname{product}(a, b-1)$
- Does it work?
- Test it!


## Not-So-Basic Arithmetic

- Base Case
o product(a, 0) = 0
- Recursive Step
- product( $a, b)=a+\operatorname{product}(a, b-1)$
def product(a, b): if $b==0$ :
return 0
elif $b<0$ :
return -1 * product(a, -b )
else:
return $a+\operatorname{product}(a, b-1)$


## Not-So-Basic Arithmetic Quiz

- Write a recursive power function
o power $(a, b)=a$ * $a$ * $a$ * ... * a (b times)
- (don't worry about negative b)
- Steps
- Define power recursively
- Come up with a base case
- Put it into code


## Not-So-Basic Arithmetic Quiz

- Write a recursive power function
- power(a, b) = a * a * a * ... *a (b times)
- Base Case
- power(a, 0) = 1
- Recursive Definition
- power( $a, b)=a$ * power( $a, b-1$ )
def power(a, b):
if $b=0$ :
return 1
else:
return a * power(a, b-1)


## Sizing things up

- Python has a built in len function
- But what if we want to write our own?
- Write a function myLen(string)
- returns the length of the given string
-What's the base case?
- The empty string has length 0
-What's the recursive step?
- Recursively compute length of "rest" of string
- Our string has length 1 greater


## Sizing things up

def myLen(string):
"""Computes length of string"""
\# Base Case
if string == "":
return 0
\# Recursive step
else:
return 1 + myLen(string[1:])

## Where to stop?

- Problem needs to get smaller when you recurse
- factorial
- The number gets smaller
- Base case at 0
- product
- Second number gets smaller
- Base case at $b==0$
- length
- Size of string gets smaller
- Base case at empty string

