
CIS 122

Throwing you for a loop

Definitively Speaking

● How could we solve the collatz problem using loops?
○ How many times do we need to apply HOTPO before we

reach 1?

Definitively Speaking

● How could we solve the collatz problem using loops?
○ How many times do we need to apply HOTPO before we

reach 1?

● Uh oh
○ Don't know how many times we'll need to loop

Definitively Speaking

● How could we solve the collatz problem using loops?
○ How many times do we need to apply HOTPO before we

reach 1?

● Uh oh
○ Don't know how many times we'll need to loop

● For loop are definite loops
○ We know exactly how long they will last
○ One loop for every element in our sequence

● The collatz problem requires an indefinite loop
○ We don't know how many loops it will require beforehand

While Loops

● We need a new type of loop
○ While loops

● While some condition is true
○ Keep running block of code

● Very similar to if statement
○ If statement runs block once if condition is true
○ While loop runs block repeatedly while condition is true

Anatomy of a while loop

x = 0

while x < 10:
 print x
 x = x + 1

Loop Condition

Loop body

Initialization

While Loops

● While condition is True, keep running body
○ What if condition is always true?

● Infinite loop
○ Similar to infinite recursion
○ But no limit on number of loops

● Sometimes an infinite loop is a good thing
○ IDLE shell
○ Operating systems

x = 0
while x >= 0:
 print x
 x = x + 1

x = 0
while True:
 print x
 x = x + 1

While Loops

● What if you need to break out of a loop early?
○ Use the break keyword
○ Stop running whatever loop you're in

x = 0
while True:
 print x
 x = x + 1
 if x == 10:
 break

While Loops

● Avoid using break statements when you can
○ Tend to make code less clear
○ A good loop condition is far more readable

● If you use break statements, comment them well

x = 0
while True:
 print x
 x = x + 1
 if x == 10:
 break

x = 0
while x < 10:
 print x
 x = x + 1

While Loop Practice

● Implement collatz(x) using a while loop
○ How many times do we need to perform HOTPO on x

before it reaches 1?

● How could we use a while loop to solve this problem?

While Loop Practice

● Implement collatz(x) using a while loop
○ How many times do we need to perform HOTPO on x

before it reaches 1?

● How could we use a while loop to solve this problem?
○ Initialize a counter to 0
○ While x hasn't reached 1...

■ Apply HOTPO to x
■ Increment counter

While Loop Practice

● Implement collatz(x) using a while loop
○ How many times do we need to perform HOTPO on x

before it reaches 1?

 def collatz(x):
 steps = 0 #Initialize a counter to 0
 while x != 1: # While x hasn't reached 1
 x = HOTPO(x) # Apply HOTPO to x
 steps = steps+1 # Increment counter

So many Choices

● We've seen two types of loops

● for loops
○ Repeat some task for each element in a sequence
○ Definite loops
○ Good for specific tasks

● while loops
○ Repeat some task while a condition is true
○ Indefinite loops
○ General purpose

So many Choices

● Which loop should I choose?

● Do have a sequence you want to iterator over?
○ for element in sequence

● Do you know how many times you want to loop?
○ for x in range(n)

● None of the above?
○ while <some condition>

Homework Preview

● Part 0 - Summing Things Up

● Part 1 - Circular Reasoning

● Part 2 - Password Checker

● Part 3 - Guessing Game

Part 0 - Summing Things Up

● Write a function mySum(numbers)
○ Takes a list of numbers
○ Returns their sum

● What loop should we use?

● For inspiration, look over our max function from yesterday

Part 1 - Circular Reasoning

● Turtle graphics are back!

● Write a function circle(radius)
○ Draw circle of the given radius
○ This isn't an easy task
○ But what if we approximate our circle as a polygon

● Write a function polygon(sides, sideLength)
○ Draw a polygon with the given number of sides
○ Repeatedly move forward and turn
○ What loop should we use?

Part 2 - Password Checker

● Make sure passwords are sufficiently secure
○ At least 8 characters long
○ At least 1 letter
○ At least 2 numbers
○ Don't contain 'E' or 'e' (those letters are far too common)

● Write a function passwordChecker(password)
○ Returns False if password fails any tests
○ Returns True if password passes all tests

Part 2 - Password Checker

● Write helper functions to test individual cases
○ Does this string contain a letter?
○ Does this string contain two numbers?

● Call helper functions from main passsword checker

● What loops should we use?

Part 2 - Password Checker

● Special string methods
○ dot notation

 >>> 'a'.isalpha()
 True

 >>> 'b'.isdigit()
 False

 >>> myChar.isupper()
 ???

Part 3 - Guessing Game

● Write a function guessingGame()

● When called, Python should play a guessing game
○ Pick a random number
○ Ask the user to guess a number
○ If they guess wrong, give them a hint (too high, too low)
○ If they guess right, congratulate them

■ And tell them how many guesses they took

● What needs to loop?
○ And loop should we use?

