
CIS 122

Functions Under the Surface

Functions Revisited

● We now have the power to write our own functions

 def plusOne(x):
 """Adds one to x"""
 return x+1

● Who cares?
○ We could just write the same code outside a function...

■ y = plusOne(x)
■ y = x+1

○ Why do we need functions?

Functions Revisited

● �Functions simplify coding
○ Easier to solve small problems
○ Construct building blocks

● Reduce redundancy
○ Don't write the same 5 lines of code over and over
○ Write one function and call it 5 times

● Explain code
○ Descriptive function names

A Capital Idea

● Let's write a function to capitalize a letter
○ Requires some background knowledge
○ How does Python represent letters?

● Under the surface, characters are just numbers
○ 'A' → 65
○ 'a' → 97
○ '%' → 37

A Capital Idea

● We can convert from one to the other

● ord method converts characters to numbers
 >>> ord('a')
 97

● chr method converts numbers to characters
 >>> chr(97)
 'a'

A Capital Idea

● What's the difference between a lower-case letter and an
upper-case letter?

● What sequence of operations would convert a lower-case
letter to an upper-case letter?

● Let's write a function!

A Capital Idea

 def capitalize(lowerCaseC):
 """Capitalizes lowerCaseC"""

 lowerCaseN = ord(lowerCaseC)
 upperCaseN = lowerCaseN - 32
 upperCaseC = chr(upperCaseN)
 return upperCaseC

Stack Diagrams

● We've seen two different ways to instantiate variables

● Variable assignment
○ numDots = 5

● Function calls
○ capitalize('a')

● How does python keep track of which variables exist?

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5
 y → 6

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → ???

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → 11

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

def foo(x):
 y = x+1
 z = x+y
 return z

a = 5
b = foo(a)
c = a+b

__main__
 foo → <function object>
 a → 5
 b → 11
 c → 16

foo
 x → 5
 y → 6
 z → 11

Stack Diagrams

● Code doesn't always run linearly
○ During function calls, other code is put on hold
○ Python creates a new stack frame in memory
○ These stack frames can nest

● Who's seen the movie Inception?

Variable Scoping

● Variables exist within a specific scope
○ Only make sense within a certain context

● Variables within a function cannot be seen from outside
○ Don't overwrite outside variables
○ Deleted when function ends

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo
 x → 6

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo
 x → 6
 z → 7

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → ???

foo
 x → 6
 z → 7

Variable Scoping

def foo(x):
 z = x + 1
 return z

x = 5
y = foo(6)

__main__
 foo → <function object>
 x → 5
 y → 7

foo
 x → 6
 z → 7

Variable Scoping

● Why is variable scoping important?
○ Lots of built in functions in Python
○ We don't know (or care) how they're written
○ My code shouldn't depend on someone else's variable

names!

